

Gutachten zur Sanierungsuntersuchung des REME-Geländes, Mönchengladbach-Lürrip

A 1 A 2 A 3 A 4 A 5 A 6	Veranlassung Geologisch-h Untersuchung Ergebnisse d Allgemeine B	Teil und Grundwasser g / Aufgabenstellung ydrogeologische Übersicht gsprogramm Grundwasser er Grundwasseruntersuchungen im Überblick ewertung und Handlungsempfehlungen d Kartenverzeichnis	1 1 3 2 2
Anlag A 1	Abbildungen Abb. A 1-1: Abb. A 1-2: Abb. A 1-3: Abb. A 1-4: Abb. A 1-5: Abb. A 1-6: Abb. A 1-7: Abb. A 1-8: Abb. A 1-9: Abb. A 1-10: Abb. A 1-11:	Übersichtsplan der Sanierungsbereiche auf dem REME-Gelände Überregionale Grundwassergleichen 1955 – 2007 Grundwassergleichenplan der Stichtagsmessung vom 24.03.2011 Grundwassergleichenplan der Stichtagsmessung vom 23.11.2011 Grundwassergleichenplan der Stichtagsmessung vom 21.08.2012 Grundwassergleichenplan der Stichtagsmessung vom 20.03.2013 Grundwasserhöhen der Stichtagsmessung vom 02.08.2013 Grundwasserhöhen der Stichtagsmessung vom 13.02.2014 Grundwasserhöhen der Stichtagsmessung vom 08.04.2014 Grundwasserhöhen der Stichtagsmessung vom 08.09.2014 Grundwasserhöhen der Stichtagsmessung vom 24.11.2014	
A 2	Tabellen Tab. A 2-1: Tab. A 2-2: Tab. A 2-3: Tab. A 2-4: Tab. A 2-5: Tab. A 2-6: Tab. A 2-7:	Grundwasserhöhen / Ergebnisse der Stichtagsmessungen 2010 bis 2 Analysenergebnisse der Grundwasserkampagne vom 21./22.08.2012 Analysenergebnisse der Grundwasserkampagne vom 20./21.03.2013 Analysenergebnisse der Grundwasserkampagne vom 02./05.08.2013 Analysenergebnisse der Grundwasserkampagne vom 13./14.02.2014 Analysenergebnisse der Grundwasserkampagne vom 08./09.09.2014 Analysenergebnisse der Grundwasserkampagne vom 24./25.11.2014	
A 3	(Grundwasse	rotokolle und Prüfberichte SEWA Laborbetriebsgesellschaft mbH, Esserkampagnen 21./22.08.2012, 20./21.03.2013, 02./05.08.2013, 4, 08./09.09.2014, 24./25.11.2014)	∍n

Bohrprofile, Schichtenverzeichnisse und Ausbaupläne der neuen Grundwassermess-

(GWM 780166, 780167, 780168, 780169, 780170, 780171, 780172, 780173, 780174)

A 4

В	Sanierungsl REME-West	bereich 1: Ehemalige Entfettungsanlage und Benzinabscheider Inn	enhof,
B 1	Ergebnisse o	der Voruntersuchungen	1
B 2	Untersuchun	gsprogramm	1
B 3	Ergebnisse o	der Sanierungsuntersuchung	2
B 3.1	Boden		2
B 3.2	Grundwasse	r	2
B 4	Bewertung d	er Untersuchungsergebnisse	3
B 5	Handlungser	mpfehlungen / Sanierungsmöglichkeiten und Kostenschätzung	4
Anlag			
B 1	Abbildungen		
	Abb. B 1-1:	Lageplan der Rammkernsondierungen (inkl. Voruntersuchungen)	
	Abb. B 1-2:	Lageplan der Rammkernsondierungen, sensorische Befunde und BTEX-Gehalte in direct-push-Grundwasserproben	
	Abb. B 1-3:	West-Ost-Profilschnitt (A-A') im Bereich der Entfettungsanlage	
	Abb. B 1-4:	Bereich der Kontamination mit 1,1,1-Trichlorethan (TCA) anhand der	
		Bodenluft- und Feststoffergebnisse	
	Abb. B 1-5:	Sanierungszone und Kubatur des Schadens	
B 2	Tabellen		
	Tab. B 2-1:	Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen	
	Tab. B 2-2:	Entwicklung der 1,1,1-Trichlorethan-Gehalte im Grundwasser im Ze von 1993 bis 2014	itraum
	Tab. B 2-3:	Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)
В3	Prüfberichte		
B 4	Bohrprofile u	nd Schichtenverzeichnisse der Rammkernsondierungen	
С	Sanierungsl	bereich 2: Ehemaliger Generatorenprüfstand, REME-West	
C 1	Ergebnisse d	der Voruntersuchungen	1
C 2	Untersuchun	gsprogramm	1
C 3	Ergebnisse o	der Sanierungsuntersuchung	2
C 3.1	Boden		2
C 3.2	Grundwasse	r	2
C 4	_	er Untersuchungsergebnisse	3
C 5	Handlungser	mpfehlungen / Sanierungsmöglichkeiten und Kostenschätzung	4

Anlage	en		
C 1	Abbildungen		
	Abb. C 1-1:	Lageplan der Rammkernsondierungen im Bereich des Generatorenprüfstandes, BTEX-Gehalte in direct-push-Grundwasserproben und sensorische Befunde	
	Abb. C 1-2:	BTEX- und Sulfatkonzentrationen im Grundwasser der Messtellen Umfeld des Generatorenprüfstrandes	im
C 2	Tabellen		
	Tab. C 2-1:	Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen	
	Tab. C 2-2: Tab. C 2-3:	Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004) Analysenergebnisse der Grundwasserkampagne vom 08.04.2014 und Bewertungsgrundlagen	
C 3	Prüfberichte		
C 4	Bohrprofile ur	nd Schichtenverzeichnisse der Rammkernsondierungen	
D	Sanierungsb	ereich 3: Benzinabscheider "Karnevalhalle", REME-Ost	
D 1	_		1
D 2	Untersuchung		1
D 3	-		2
D 3.1 D 3.2	Boden Grundwasser		2
D 3.2			2 2
D 5	•		3
Anlage	en		
D 1	Abbildungen		
	Abb. D 1-1:	Lageskizze der Rammkernsondierungen, BTEX- und LAK Gehalte Grundwasserproben (in µg/l) und sensorische Befunde	in
D 2	Tabellen		
	Tab. D 2-1:	Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen	
	Tab. D 2-2:	Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)	
D 3	Prüfberichte		
D 4	Bohrprofile un	nd Schichtenverzeichnisse der Rammkernsondierungen	

E Zusammenfassung

TEIL A

ALLGEMEINER TEIL UND GRUNDWASSER

A 1 Veranlassung / Aufgabenstellung

Im Rahmen von Gefährdungsabschätzungen, zuletzt durch agus 2010, wurden auf dem ehemaligen Militärstützpunkt der britischen Rheinarmee REME (Royal Electrical and Mechanical Engineers) schließlich drei Belastungsschwerpunkte festgestellt (vgl. Abb. 1), die nach den vorliegenden Ergebnissen weitere Untersuchungen im Hinblick auf eine Sanierung erforderlich machten:

- Sanierungsbereich 1: ehem. Entfettungsanlage (1b) mit hoher Belastung an 1,1,1-Trichlorethan (TCA) in der Bodenluft und im Grundwasser sowie benachbarter Öl-/Benzin-Abscheider im Innenhof Fa. Pollrich (1a) mit hohen BTEX-/LAK-Konzentrationen in der Bodenluft und direct-push-Grundwasserproben,
- Sanierungsbereich 2: ehem. Generatorenprüfstand mit sehr hohen BTEX-/LAK-Konzentrationen in direct-push-Grundwasserproben,
- Sanierungsbereich 3: Abscheider im Osten der ehem. Waschhalle mit erhöhten BTEX-/ LAK-Konzentrationen in direct-push-Grundwasserproben.

Im Hinblick auf eine Sanierung sollen u.a. die Belastungsbereiche abgegrenzt und ggf. Sanierungsmöglichkeiten aufgezeigt werden.

Das Büro agus wurde mit Gutachtervertrag vom 28.01.2011 mit den dazu erforderlichen Untersuchungen beauftragt.

A 2 Geologisch-hydrogeologische Übersicht

Regionalgeologisch liegt Mönchengladbach im Bereich der Niederrheinischen Bucht, einem Senkungsgebiet, das sich im Laufe des Tertiärs entwickelt hat und durch zahlreiche Staffelbrüche in einzelne Schollen zerlegt wurde.

Das Untersuchungsgebiet REME-West befindet sich im Bereich der Venloer Scholle, die durch den wenige hundert Meter nordöstlich etwa im Bereich der Zeppelinstraße verlaufenden Viersener Sprung bzw. durch das Viersener Sprungsystem von der Krefelder Scholle abgegrenzt wird.

Folgende Schichtfolge ist fürs REME-Gelände charakteristisch (vom Hangenden zum Liegenden):

- großflächige Versiegelung (Beton, Asphalt, Verbundpflaster)
- Anthropogene Auffüllungen bzw. Anschüttungen (max. ca. 2,5 m mächtig),
- Quartäre Ablagerungen (Pleistozän):
 - Lößlehm (bis 3 m mächtig),
 - Untere Mittelterrasse (Sande und Kiese, ca. 10-20 m mächtig),
- Tertiäre Sedimente (Miozän):
 - Meeressande (Feinsande, z.T. schluffig bis stark schluffig, lokal Ton, mehrere 10er Meter mächtig).

Unterlagert werden die Meeressande von Flöz Frimmersdorf, dessen Oberfläche im Untersuchungsgebiet bei -20 bis -30 m NN, d.h. in ca. 70 m Tiefe liegt.

Die hydrogeologischen Verhältnisse werden durch die Lockergesteinsschichten des Quartärs und Tertiärs bestimmt.

Grundwasserdeckschicht ist der weitverbreitete, bis etwa 3 m mächtige Lößlehm, ein Grundwassergeringleiter mit Durchlässigkeiten bzw. kf-Werten in der Größenordnung 10⁻⁶ bis 10⁻⁹ m/s.

Die darunter folgenden 10-20 m mächtigen Sande und Kiese der Unteren Mittelterrasse sind im Untersuchungsgebiet Hauptgrundwasserleiter und bilden im allgemeinen das oberste Grundwasserstockwerk. Sie weisen zumeist k_f -Werte von 10^{-3} bis 10^{-4} m/s auf und sind als gut bis sehr gut durchlässig einzustufen.

Die Basis des quartären Grundwasserleiters bilden tertiäre Meeressande, die je nach Korngröße bzw. Schluffanteil wechselnde kf-Werte von 10⁻⁴ bis 10⁻⁵ m/s aufweisen, damit insgesamt geringer durchlässig sind und ein gesondertes Grundwasserstockwerk bilden. Lokal kommen hier auch Schluffe und Tone (z.B. GWM 780078, 780079, 780130) sowie Torfe (780166, 780170, 780171, 780174) vor, die als Grundwassergering- bis -nichtleiter anzusprechen sind.

Im Liegenden der Meeressande bildet Flöz Frimmersdorf als Grundwasserstauer die Basis der oberen Grundwasserstockwerke.

Nach Mull & Partner 2002 ergab ein Grundwassergütepumpversuch einen kf-Wert von $8\cdot 10^{-4}$ m/s, eine Filtergeschwindigkeit (v_f) von ca. 10 m/a sowie eine Abstandsgeschwindigkeit (v_a) von ca. 70 m/a (bei einer angenommenen Porosität (P^*) von 16 %).

Der Grundwasserabfluss erfolgt großräumig zum etwa 1,6 km entfernten Vorfluter Niers in Nord-Nord-Ost-Richtung (vgl. Abb. A 1-2).

Im Bereich REME-West zeichnet sich u.a. nach den Ergebnissen der Stichtagsmessungen eine eher parallel zum unmittelbar südlich angrenzenden Gladbach als Regenwasservorfluter, d.h. eine Ost-Süd-Ost gerichtete Fließrichtung ab, bei einem insgesamt geringen hydraulischen Gradienten von ca. 0,002 bzw. 1:500 (vgl. Abb. A 1-3 bis A 1-11), der zeit- und gebietsweise noch deutlich geringerer ausfallen kann (vgl. Teil B und Teil C dieses Gutachtens). Auffällig ist eine Anomalie im Verlauf der Lohstraße. Hier ist auf wenigen Metern Entfernung eine Höhendifferenz der Standrohrspiegelhöhen von ca. 0,6 m zu verzeichnen.

Komplexer als im Westteil gestaltet sich nach den Ergebnissen der bisherigen Stichtagsmessungen die Grundwassersituation im Bereich REME-Ost. Die Fließrichtungen scheinen sich um die Messstelle 780057 als tiefstem Punkt zu "drehen", so dass im Nordwesten des Geländes Ost-Süd-Ost-, im zentralen Teil Nordost- und im Südosten Nord-Nord-Ost-gerichtete Strömungsrichtungen wechseln (vgl. Abb. A 1-3 bis A 1-6). Im äußersten Süden ist die Grundwasserströmung nach Süden auf den als Regenwasservorfluter fungierenden Gladbach ausgerichtet. Der hydraulische Gradient ist gering mit ca. 0,003 bis 0,004 bzw. 1:350 bis 1:250.

Der Grundwasserflurabstand liegt zwischen 0,8 und 3,5 m, so dass lokal bzw. bei hohen Grundwasserständen mit halb gespannten bis gespannten Grundwasserverhältnissen gerechnet werden muss, d.h. die Basis des Lößlehms liegt z.T. im Grundwasserbereich bzw. in der wassergesättigten Zone.

A 3 Untersuchungsprogramm Grundwasser

Folgendes Untersuchungsprogramm wurde durchgeführt:

- Einrichtung von 9 weiteren Grundwassermessstellen (Durchmesser 4 Zoll),
- Stichtagsmessungen am 24.03.2011, 23.11.2011, 21.08.2012, 20.03.2013, 05.08.2013, 13.02.2014, 08.04.2014, 08.09.2014 und 24.11.2014 (vgl. Tab. A 2-1),
- Beprobungskampagnen am 21./22.08.2012, 20./21.03.2013, 02./05.08.2013, 13./14.02.2014, 08./09.09.2014, 24./25.11.2014 und Untersuchung des Grundwassers auf die vor-Ort-Parameter pH-Wert, elektrische Leitfähigkeit, Redoxpotential und Sauerstoffgehalt sowie auf KW, Phenole, BTEX, LHKW, TOC, Arsen, Schwermetalle, Cyanide, Chlorid, Sulfat, Sulfid, Nitrat, Nitrit, Ammonium.

A 4 Ergebnisse der Grundwasseruntersuchungen im Überblick

Die Ergebnisse der Stichtagsmessungen sind zusammengefasst in Tab. A 2-1 (Anlage A 2) dargestellt.

Im Beobachtungszeitraum 2010 bis 2014 wurden die höchsten Grundwasserstände bei fast allen Messstellen am 09.02.2010 (Ausnahme GMW 780057: 24.03.2011) gemessen.

Die niedrigsten Wasserstände sind nicht eindeutig einem Stichtag zuzuordnen und verteilen sich auf den 23.11.2011, 21.08.2012 und 02.08.2013, wobei bei den einzelnen Pegeln die Höhenunterschiede zwischen den Terminen meist sehr gering waren (oft ≤3 cm).

Die Grundwasserschwankungsbreiten lagen dabei zwischen 42 und 57 cm.

Die Ergebnisse der Grundwasseranalysen sind in den Tabellen A 2-2 bis A 2-7 (Anlage A 2) zusammengefasst und im Einzelnen in den Beprobungsprotokollen und Prüfberichten der SEWA Laborbetriebsgesellschaft mbH, Essen (Anlage A 3), dargestellt.

Signifikant erhöhte Schadstoffgehalte (bei mehreren Kampagnen >Prüfwert BBodSchV 1999 bzw. >Geringfügigkeitsschwellenwert bzw. GFS LAWA 2004) waren in den Messstellen 780054, 780058, 780061, 780168 zu beobachten und sind in der nachfolgenden Tabelle zusammengefasst.

Datum \ GWM	780054	780058	780061	780168
21.08.2012	PAK	LHKW (1,1,1-Trichlor- ethan)	PAK, Phenole, Pb, Zn	GWM noch nicht vorhanden
20./21.03.2013	PAK	-	PAK, Benzol	GWM noch nicht vorhanden
02./05.08.2013	PAK	-	PAK, Benzol, Cu, Zn	BTEX, Naphthalin
13./14.02.2014		-	PAK, Benzol	-
08./09.09.2014		LHKW (1,1,1-Trichlor- ethan)	PAK, Benzol, Pb, Zn	BTEX, Naphthalin
24./25.11.2014		LHKW (1,1,1-Trichlor- ethan), KW	PAK, Benzol, Pb, Cu, Zn	BTEX, Benzol

Die hier festgestellten erhöhten Schadstoffkonzentrationen im Grundwasser sind allesamt bekannten Schadensherden zuzuordnen.

GWM 780054 und 780061 liegen im nordöstlichen Abstrom eines südlich der Eisenbahnstrecke gelegenen ehemaligen Gaswerks. Neben gaswerkstypischen Schadstoffen (PAK, Benzol, vereinzelt Phenole) sind auch zeitweise erhöhte Konzentrationen an einzelnen Schwermetallen gemessen worden.

GWM 780058 liegt im Bereich des CKW-Schadens in der Panzerhalle (ehemalige Entfettunganlage, Sanierungsbereich 1) und GWM 780168 im Abstrom des BTEX-Schadens im Bereich des ehemaligen Generatorenprüfstandes (Sanierungsbereich 2).

Detaillierte Ergebnisse der Grundwasseruntersuchungen der drei Sanierungsbereiche sind in Teil B (Sanierungsbereich 1), Teil C (Sanierungsbereich 2) und Teil D (Sanierungsbereich 3) dieses Gutachtens dargestellt.

A 5 Allgemeine Bewertung und Handlungsempfehlungen

Es kann davon ausgegangen werden, dass größere Belastungsschwerpunkte durch die bisherigen Untersuchungen erfasst worden sind.

Es muss aber damit gerechnet werden, dass unter der großflächigen Versiegelung kleinräumige bzw. punktuelle Kontaminationen (z.B. infolge "unsachgemäßer" Ölwechsel und Entfettungs-/Reinigungsarbeiten sowie durch Handhabungsverluste bei Betankungen) auftreten.

Jegliche Eingriffe in den Boden oder Entsiegelungsmaßnahmen, insbesondere im Bereich festgestellter Belastungen, sollten deshalb vermieden werden. Außerdem ist bei allen Eingriffen eine durchgehende gutachterliche Begleitung erforderlich.

Eine konstante Belastung des Grundwassers im Untersuchungszeitraum 2010 bis 2014 ist nur im unmittelbaren Abstrom des ehemaligen Gaswerkes festzustellen (GWM 780061).

Anhaltende Grundwasserbelastungen und ausgeprägte Schadstofffahnen durch Belastungen auf dem REME-Gelände sind nicht nachzuweisen.

Es sollte weiterhin eine Grundwasserüberwachung durch etwa halbjährliche Beprobungs-kampagnen im Februar/März (vermuteter GW-Hochstand) und September/Oktober (vermuteter GW-Tiefstand) erfolgen.

A 6 Schriften- und Kartenverzeichnis

agus (2010a): Gutachten zur Gefährdungsabschätzung für das ehemalige Gelände der britischen Rheinarmee REME (westlicher Teilbereich) in Mönchengladbach-Lürrip; - Bochum agus (2010b): Gutachten zur Gefährdungsabschätzung für das ehemalige Gelände der britischen Rheinarmee REME (östlicher Teilbereich) in Mönchengladbach-Lürrip; - Bochum Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) (1999).

Geologisches Landesamt Nordrhein-Westfalen (Hrsg.; 1978): Bodenkarte von Nordrhein-Westfalen 1:50.000, Blatt L 4704 Krefeld; - Krefeld.

Grüning Consulting GmbH (2008a): "Gutachterliche Stellungnahme mit Massen- und Kostenschätzung" im Auftrag der H. & J. Jessen Baugesellschaft mbH & Co. KG.

Grüning Consulting GmbH (2008b): "Gutachterliche Stellungnahme: Untersuchungen einer Bodenverunreinigung mit LCKW. - Projekt: Erschließung des ehemaligen REME-Geländes Lürriper Straße in Mönchengladbach" im Auftrag der H. & J. Jessen Baugesellschaft mbH & Co. KG.

Hiester, U. & V. Schrenk (2008): Thermally enhanced in-situ remediation beneath buildings during their continued usage new source removal options for urban sites. ConSoil 2008. Proceedings of the 10th International UFZ-Deltares/TNO-Conferece on Soil-Water Systems in cooperation with Provincia die Milano, 3-6. June 2008, pp. 143-150, Stella Polare Congress Centre, Fiera Milano, Italy

Klewin, Jochen (2011): Geologische und hydrogeologische Grundlagen, Schadstoffinventar und Sanierungskonzeption im Bereich der Entfettungsanlage des ehemaligen Britischen Militärstandortes (REME) in Mönchengladbach, unveröffentlichte Diplomarbeit, Martin-Luther-Universität Halle Wittenberg, Halle

Königlich Preußische Geologische Landesanstalt (1912): Geologische Karte von Preußen und benachbarten Bundesstaaten 1:25.000, Blatt 4804 (neu) Mönchen-Gladbach; - Berlin.

Königlich Preußische Geologische Landesanstalt (1917): Geologische Karte von Preußen und benachbarten Bundesstaaten 1:25.000, Blatt 4704 (neu) Viersen; - Berlin.

LAGA - Länderarbeitsgemeinschaft Abfall (1997): Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen - Technische Regeln.

LAWA - Länderarbeitsgemeinschaft Wasser (2004): Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser, Düsseldorf

Landesumweltamt Brandenburg (LUA) Abt. Technischer Umweltschutz, Ref. Altlasten – T 6 (Hrsg.; 2005): Altlastenbearbeitung im Land Brandenburg, Nationale und Internationale Sachstandsrecherche - Mineralölkohlenwasserstoffe; Fachinformation des Landesumweltamtes Nr. 6, Potsdam

LUA - Landesumweltamt Nordrhein-Westfalen (Hrsg.; 2002): Vollzugshilfe zur Gefährdungsabschätzung "Boden-Grundwasser". Hinweise zur Untersuchung und Bewertung von Grundwassergefährdungen durch Altlasten nach Bodenschutzrecht. - Materialien zur Altlastensanierung und zum Bodenschutz, Bd. 17; Essen.

LZ Umwelttechnik-Ingenieurberatungs GmbH (2004a): "Zusammenfassende Stellungnahme zur Altlastensituation auf dem ehemaligen Militärstützpunkt der britischen Rheinarmee in Mönchengladbach, Lürriper Straße 400" im Auftrag der Fa. J. Rettenmaier & Söhne GmbH & Co. KG.

LZ Umwelttechnik-Ingenieurberatungs GmbH (2004b): "Abschließende Bewertung - Stellungnahme zu den ergänzenden Boden-, Bodenluft- und Grundwasseruntersuchungen auf dem ehemaligen Militärstützpunkt der britischen Rheinarmee und dem Grundstück Rettenmaier II in Mönchengladbach, Lürriper Straße 400" im Auftrag der Fa. J. Rettenmaier & Söhne GmbH & Co. KG.

Prof. Mull und Partner (1992): Gefährdungsabschätzung "Ehemalige Liegenschaft der Britischen Rheinarmee - Westlicher Teilbereich - in MG-Lürrip" im Auftrag der Fa. CFF Cellulose Füllstoff Fabrik.

Prof. Mull und Partner (1993): Gefährdungsabschätzung "Ehemalige Liegenschaft der Britischen Rheinarmee - Nördlicher Teil - in MG-Lürrip" im Auftrag der Stadt Mönchengladbach, Umweltschutzamt.

Prof. Mull und Partner (1995): Konzeptionelle Sanierungsplanung "der ehemaligen Liegenschaft REME - Rhine Workshop - der Britischen Rheinarmee in MG-Lürrip" im Auftrag der Stadt Mönchengladbach, Umweltschutzamt.

Prof. Mull und Partner (2002): Sanierungsuntersuchung für den Bereich der Entfettungsanlage des Altstandortes REME Rhine Workshop in Mönchengladbach-Lürrip; Auftraggeber: Stadt Mönchengladbach, Umweltschutzamt.

Stadt Mönchengladbach, Umweltschutzamt (1992): Orientierende Erfassung von Altlastenverdachtsflächen auf dem Gelände der ehemaligen Liegenschaft der Britischen Rheinarmee.

Stupp, H. D. (2001): DNAPL in Boden und Grundwasser – Verhalten von LCKW und PAK-Ölen, in Handbuch der Altlastensanierung, 27. Erg.-Lfg. 12/2001

Stupp, Hans Dieter, M. Gass, A. Bakenhus, B. Anneser, L. Richter & C. Griebler (2008): Ausbreitung von BTEX im Grundwasser - neue Aspekte zur zukünftigen Beurteilung von Natural Attenuation; in: Altlastenspektrum 1/2008: 16-23; Berlin-Bielefeld-München

Wabbels, Dorothea, Teutsch, Georg & der Themenverbund 1 (TV 1) "Raffinerien, Tanklager, Kraftstoffe / Mineralöl, MTBE" (2008): Leitfaden Natürliche Schadstoffminderungsprozesse bei mineralölkontaminierten Standorten,

Bochum, 30. November 2014

Dipl.-Geographin Mechthild Kedzia

Anlage A 1

Abbildungen

ADD. A 1-1.	Obersichtsplan der Sanlerungsbereiche auf dem Reime-Gelande
Abb. A 1-2:	Überregionale Grundwassergleichen 1955 – 2007
Abb. A 1-3:	Grundwassergleichenplan der Stichtagsmessung vom 24.03.2011
Abb. A 1-4:	Grundwassergleichenplan der Stichtagsmessung vom 23.11.2011
Abb. A 1-5:	Grundwassergleichenplan der Stichtagsmessung vom 21.08.2012
Abb. A 1-6:	Grundwassergleichenplan der Stichtagsmessung vom 20.03.2013
Abb. A 1-7:	Grundwasserhöhen der Stichtagsmessung vom 02.08.2013
Abb. A 1-8:	Grundwasserhöhen der Stichtagsmessung vom 13.02.2014
Abb. A 1-9:	Grundwasserhöhen der Stichtagsmessung vom 08.04.2014
Abb. A 1-10:	Grundwasserhöhen der Stichtagsmessung vom 08.09.2014
Abb. A 1-11:	Grundwasserhöhen der Stichtagsmessung vom 24.11.2014

Abb. A 1-1: Übersichtsplan der Sanierungsbereiche auf dem REME-Gelände

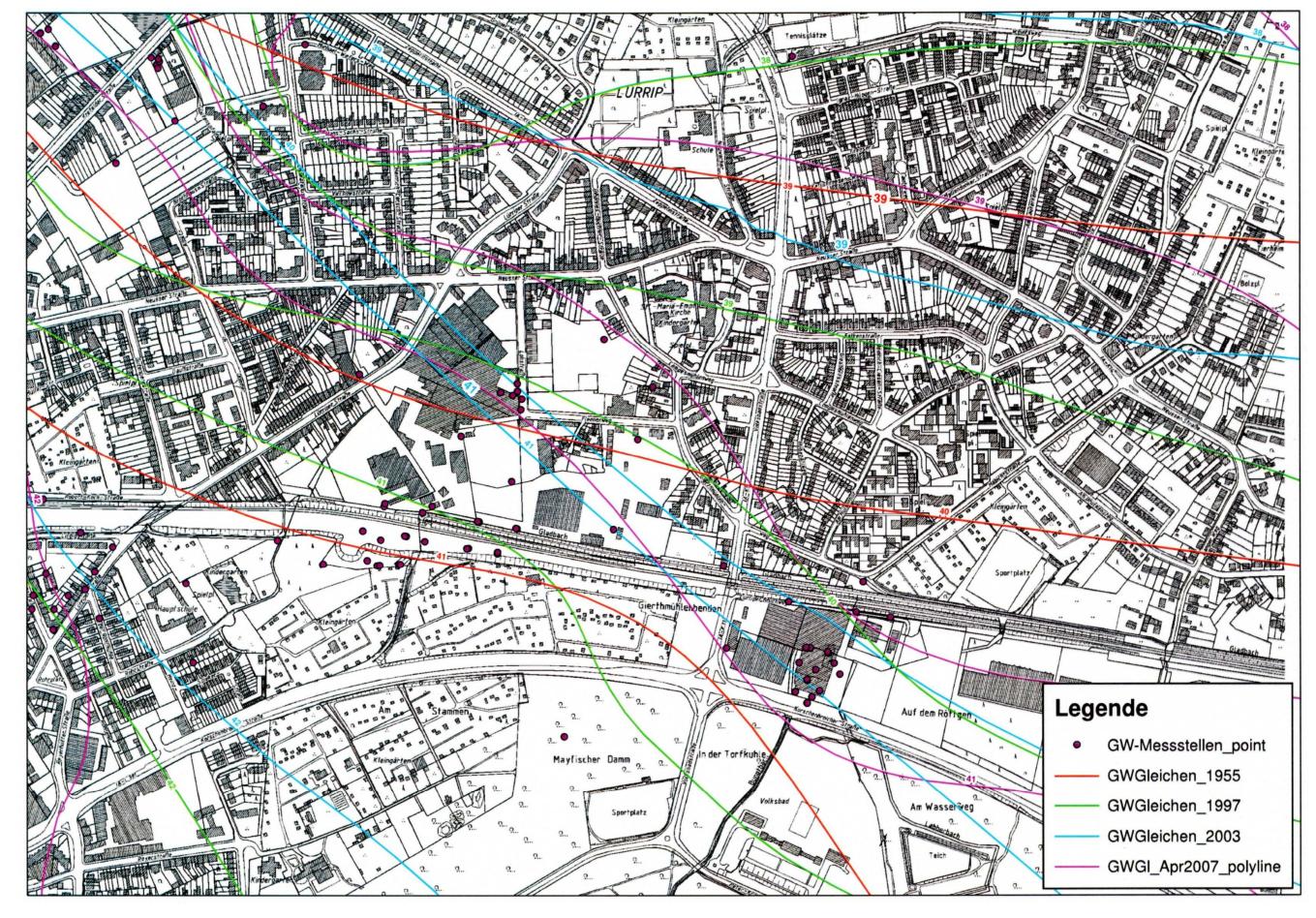


Abb. A1-2: Überregionale Grundwassergleichen 1955 – 2007 (Maßstab ca. 1:6000)

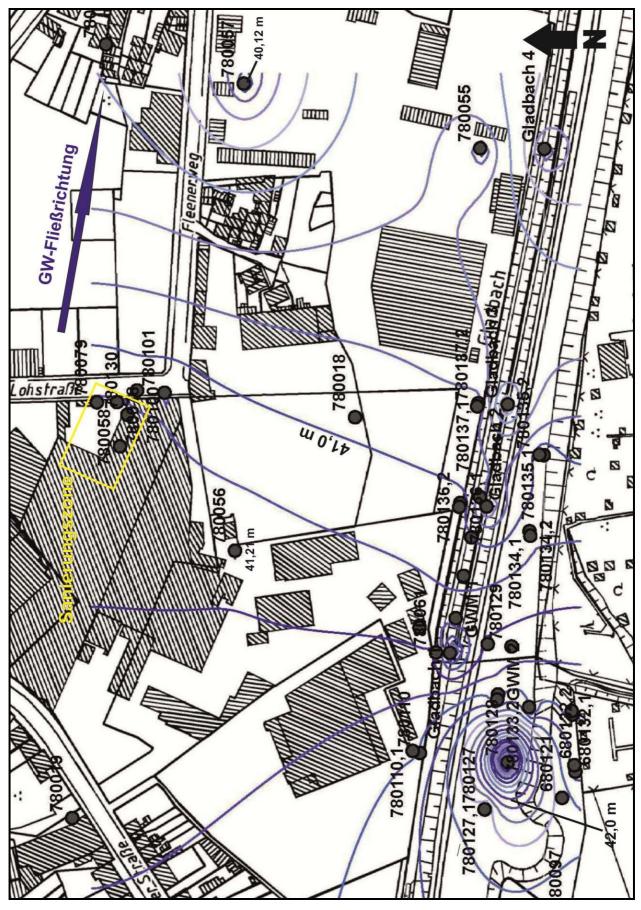


Abb. A 1-3: Grundwassergleichenplan der Stichtagsmessung vom 24.03.2011 (Quelle: Dipl.-Arbeit Jochen Klewin 2011)

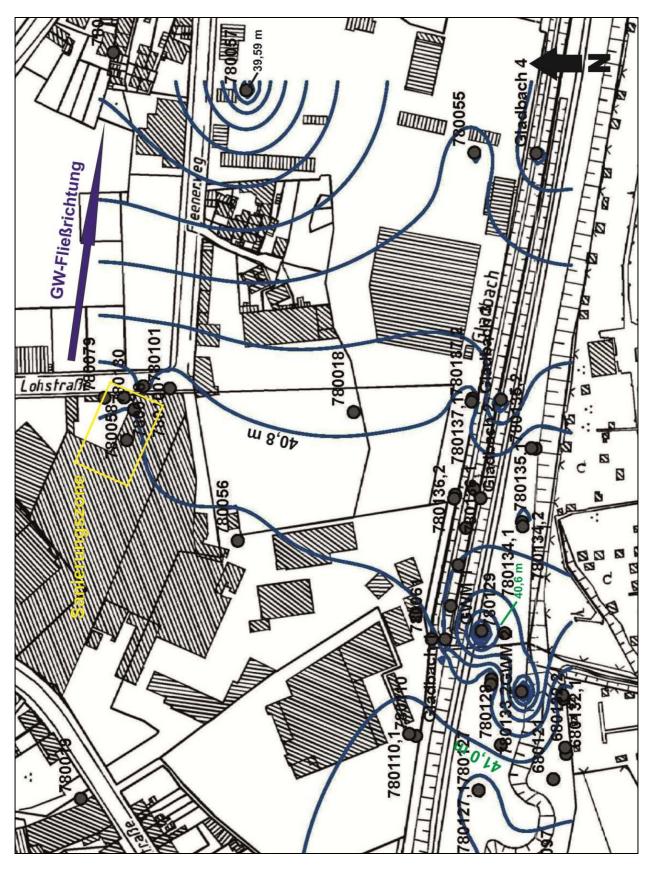


Abb. A 1-4: Grundwassergleichenplan der Stichtagsmessung vom 23.11.2011 (Quelle: Dipl.-Arbeit Jochen Klewin 2011)

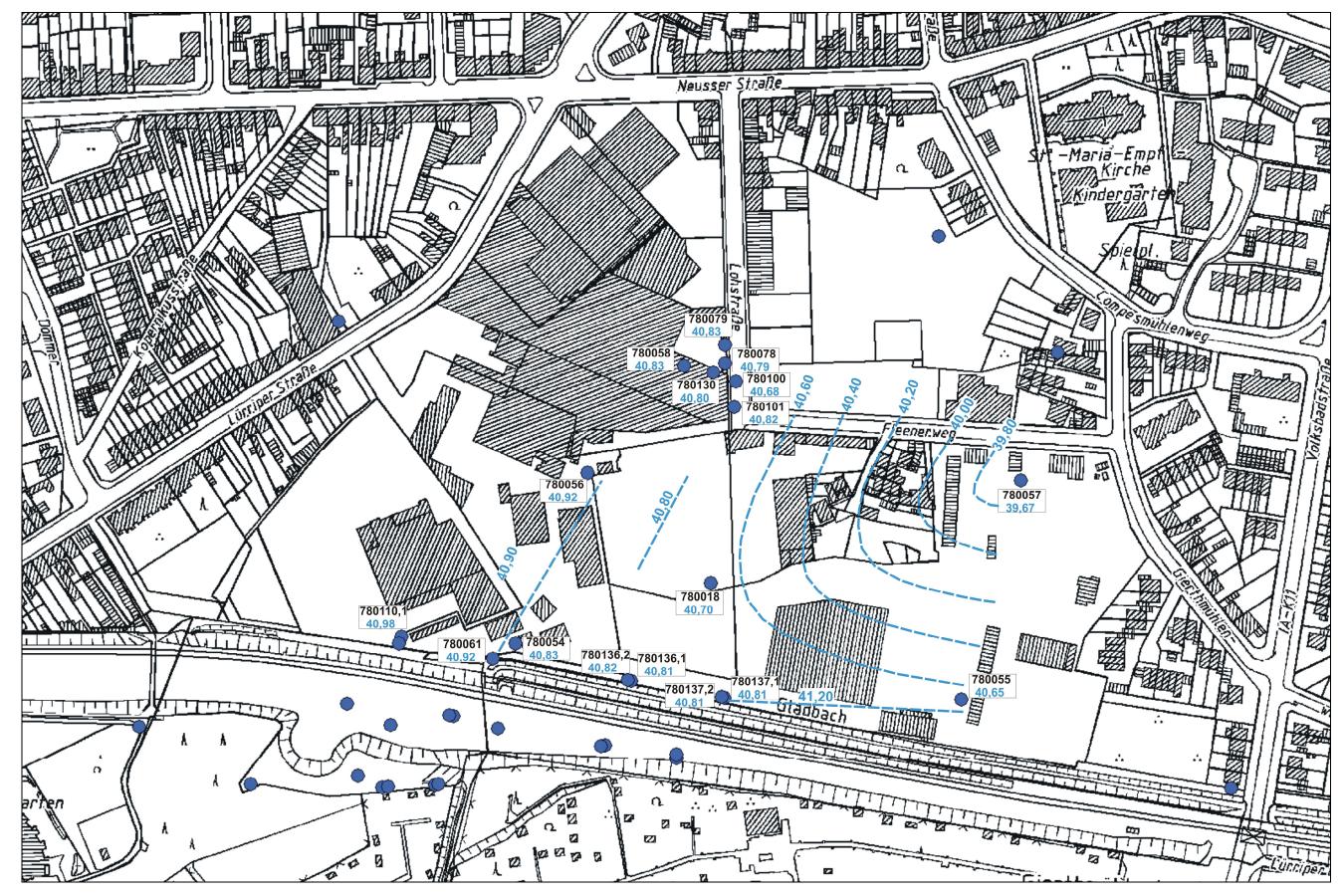


Abb. A 1-5: Grundwassergleichenplan der Stichtagsmessung vom 21.08.2012

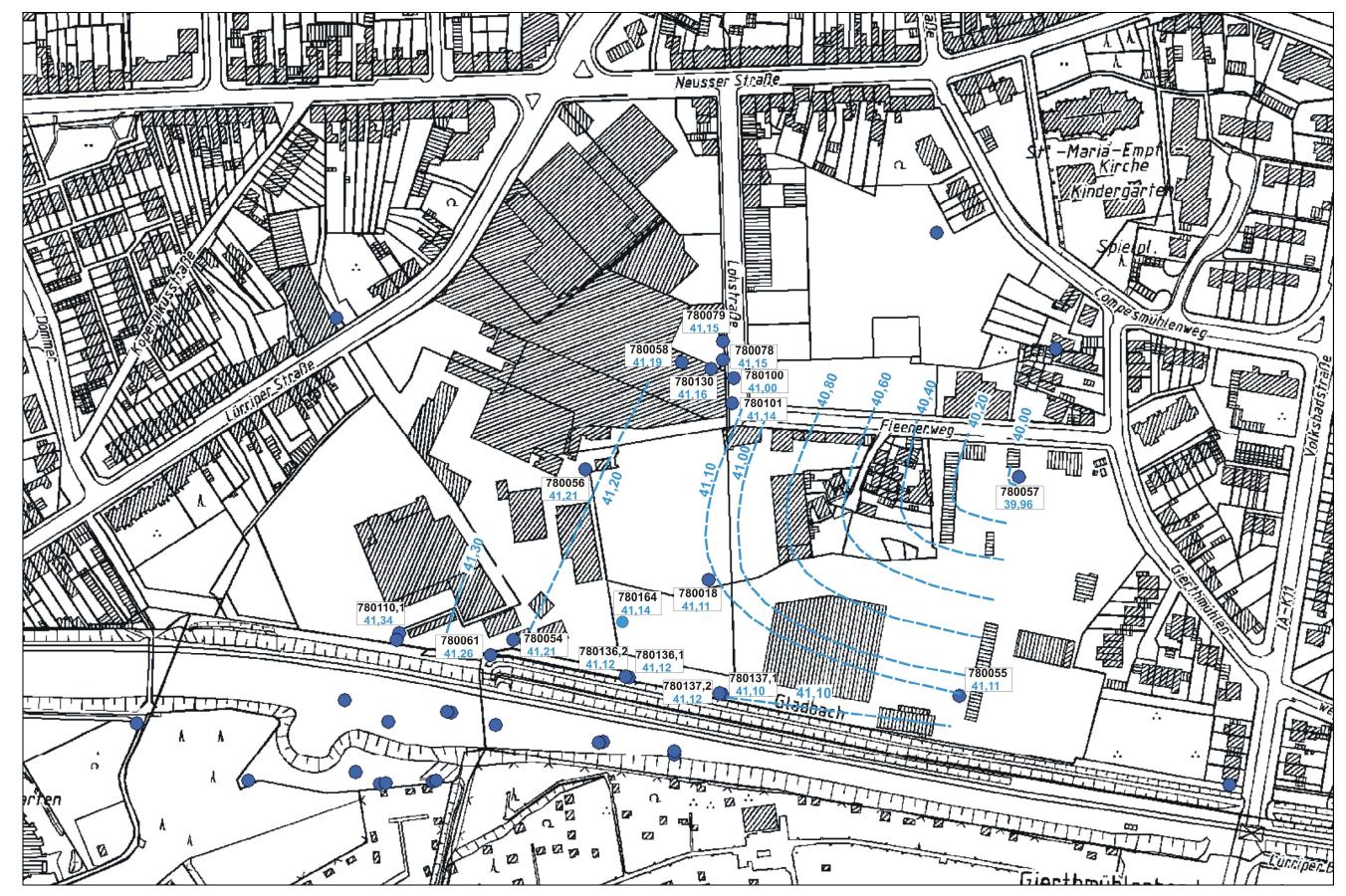


Abb. A 1-6: Grundwassergleichenplan der Stichtagsmessung vom 20.03.2013

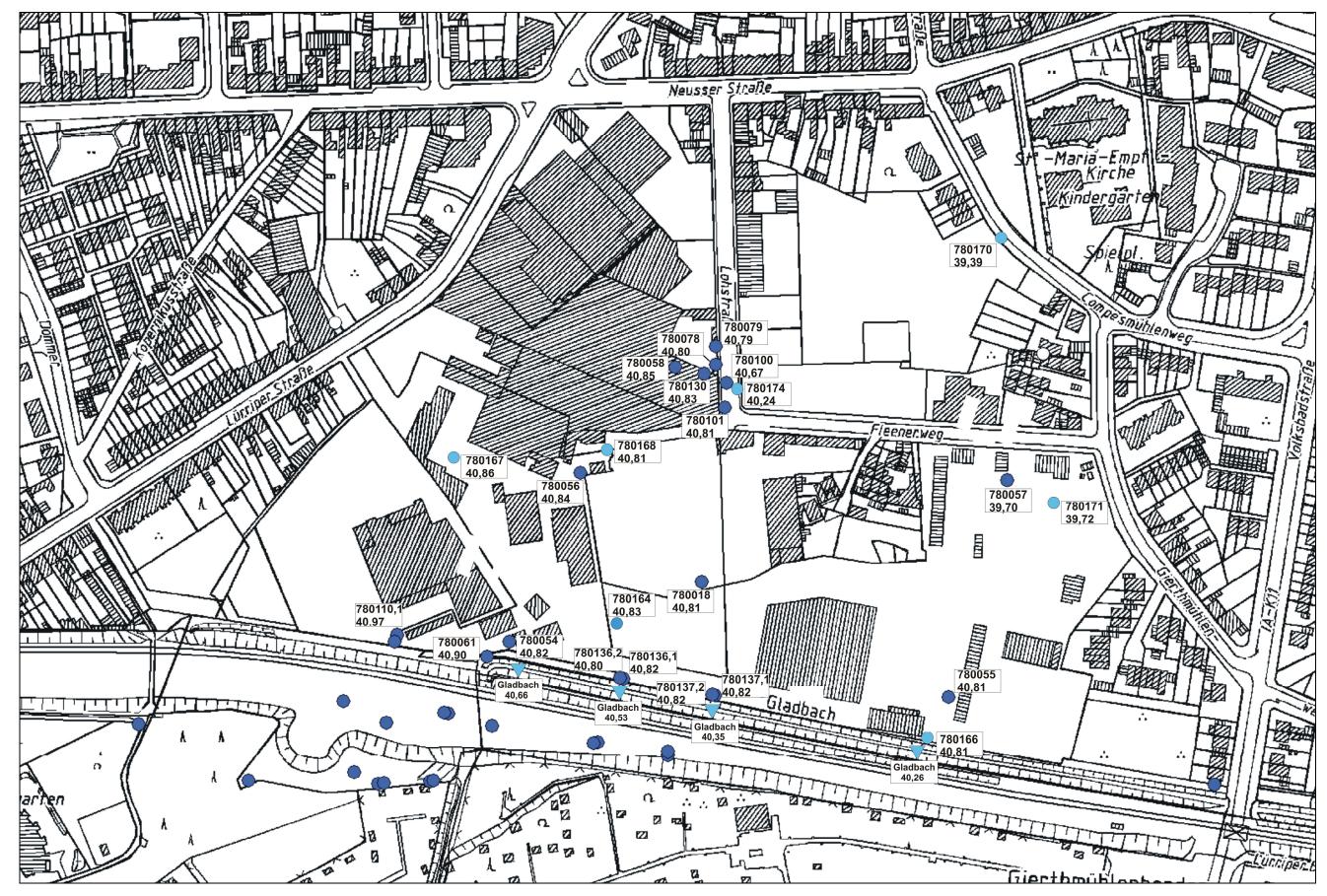


Abb. A 1-7: Grundwasserhöhen der Stichtagsmessung vom 02.08.2013

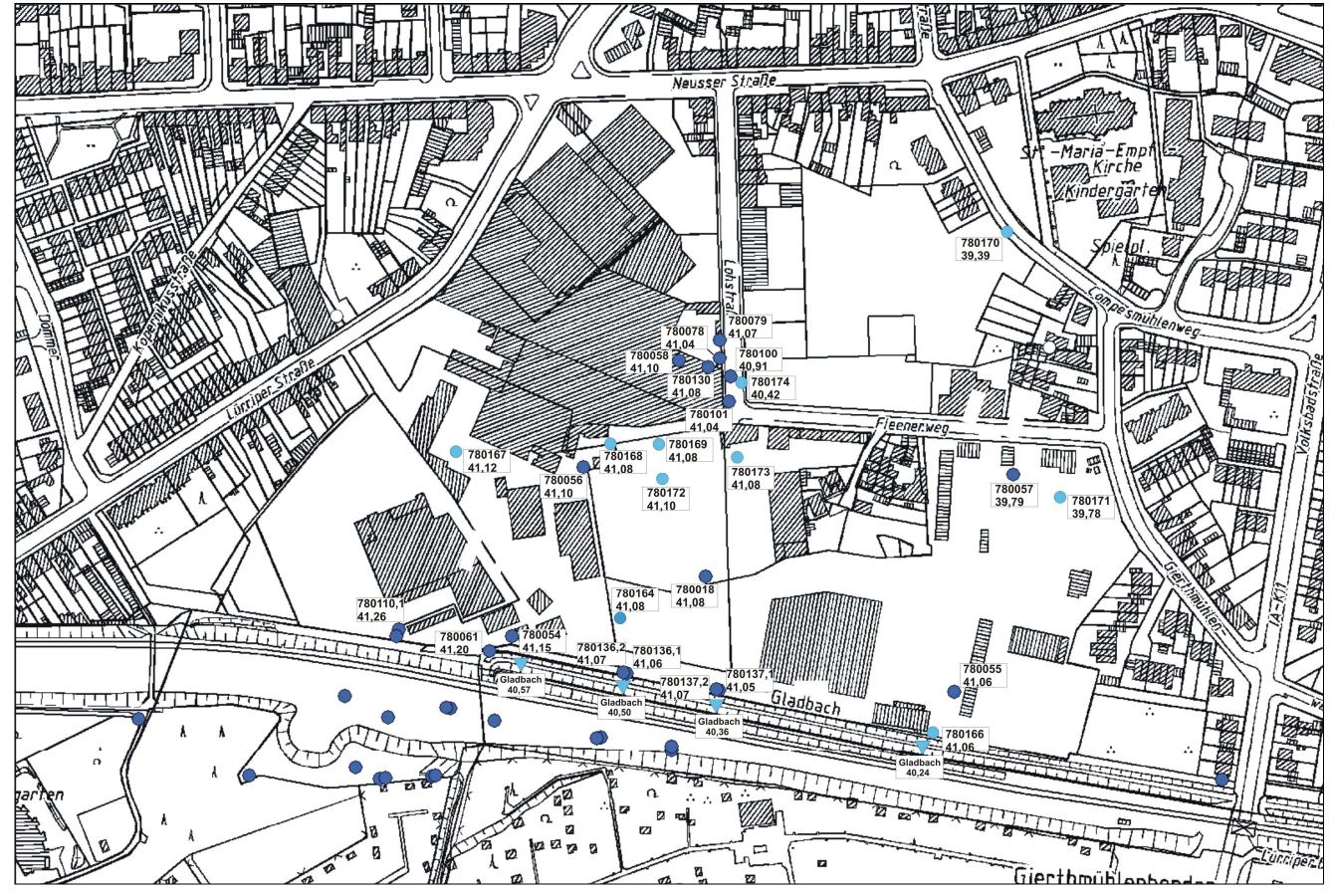


Abb. A 1-8: Grundwasserhöhen der Stichtagsmessung vom 13.02.2014

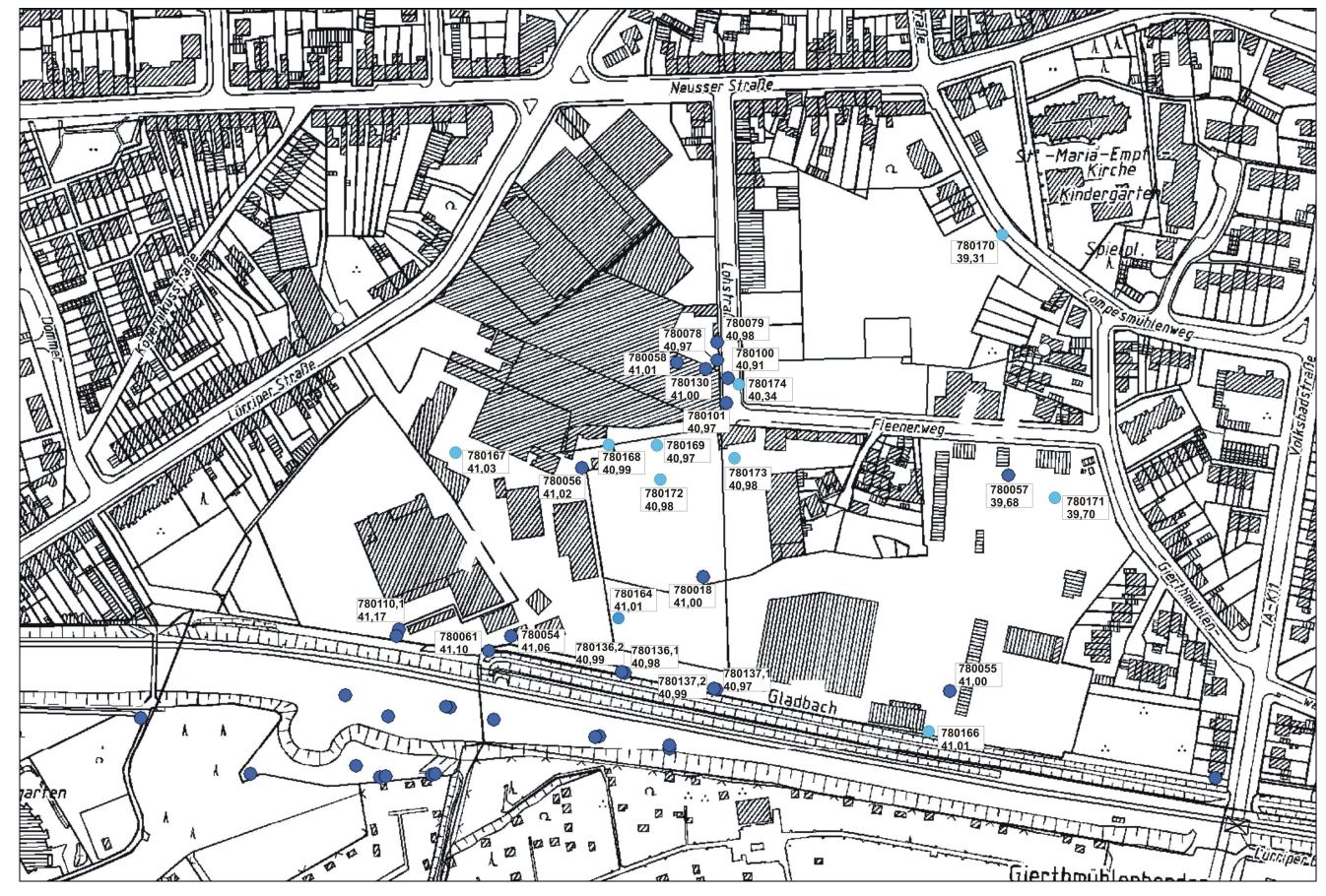


Abb. A 1-9: Grundwasserhöhen der Stichtagsmessung 08.04.2014

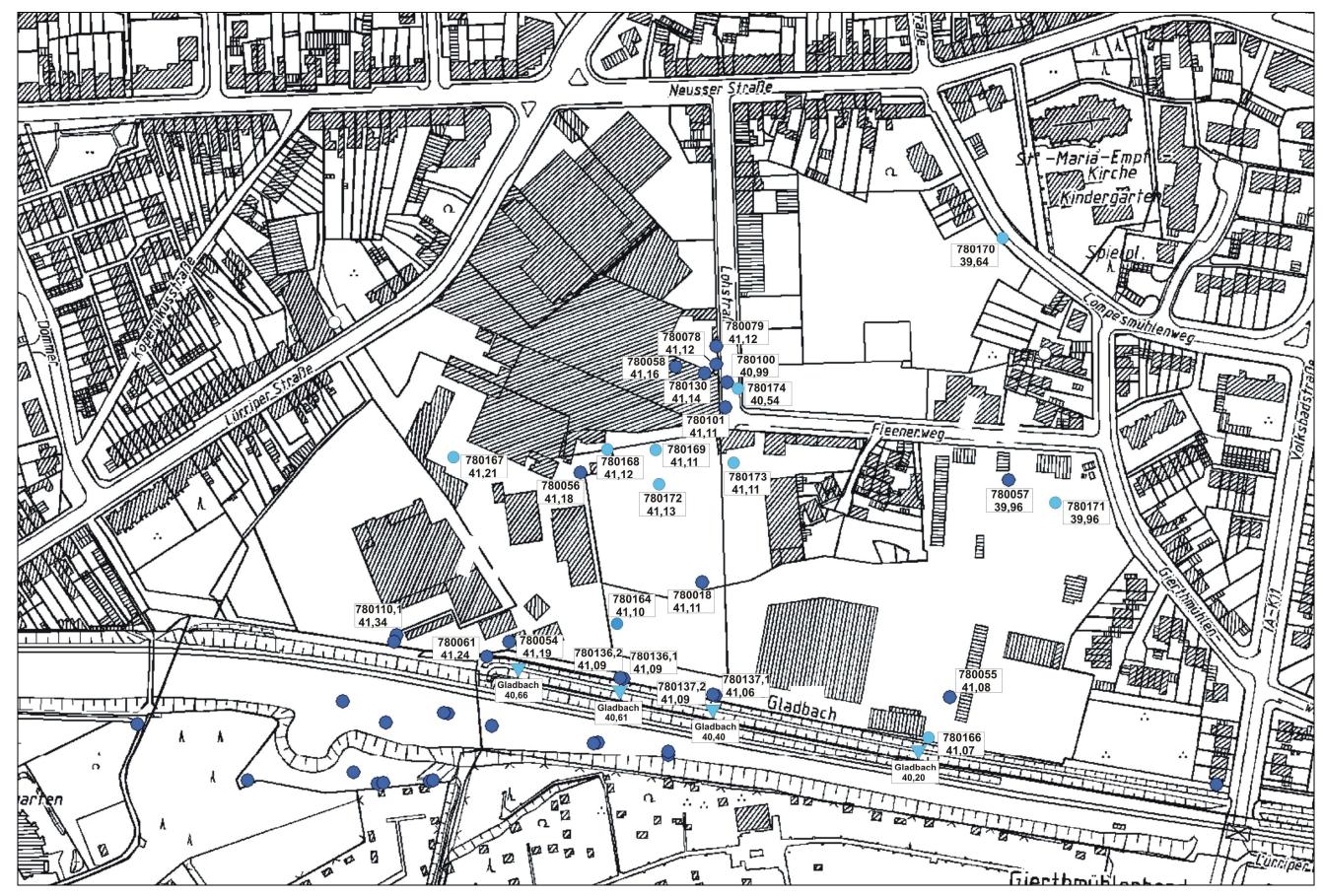


Abb. A 1-10: Grundwasserhöhen der Stichtagsmessung 08.09.2014

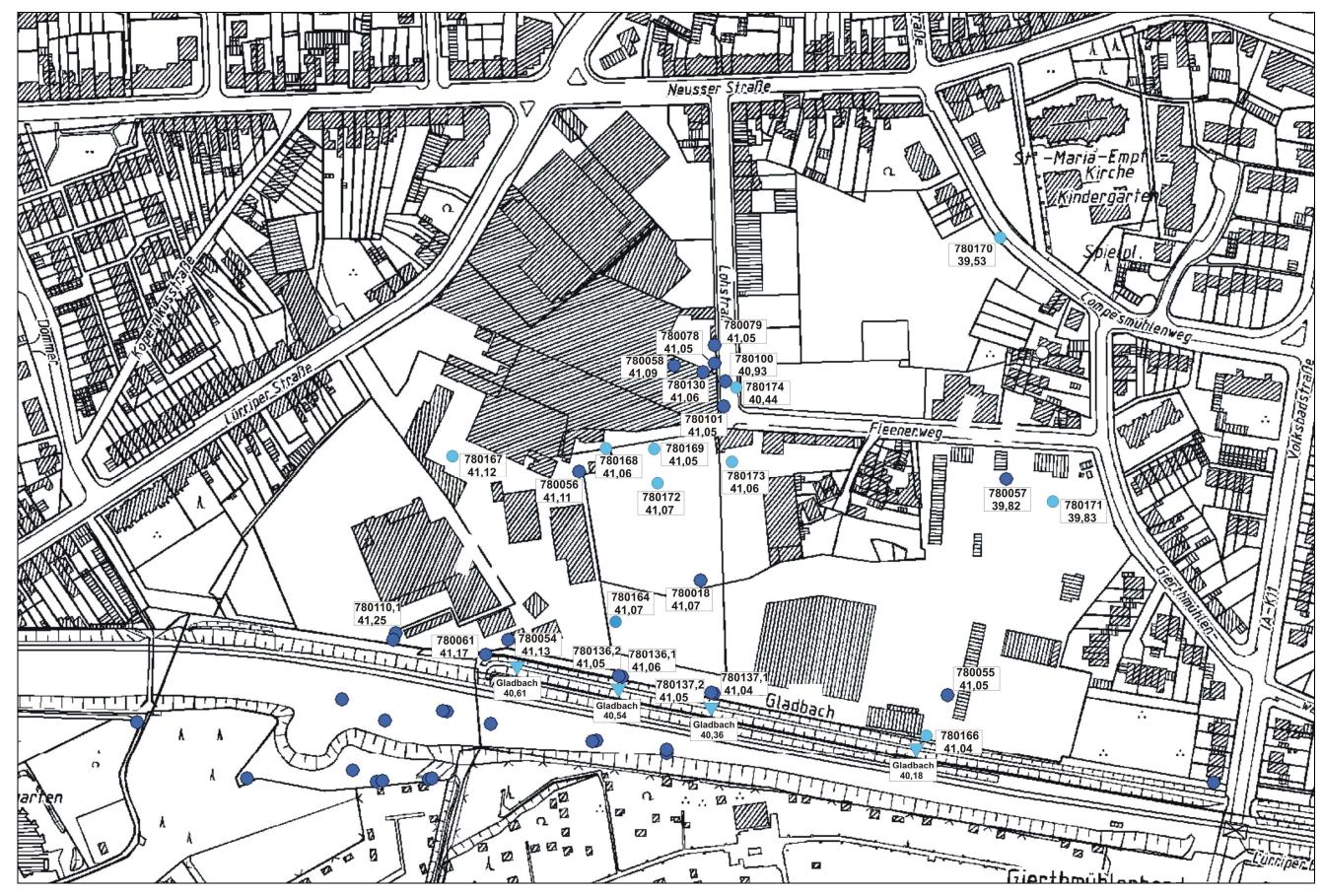


Abb. A 1-11: Grundwasserhöhen der Stichtagsmessung 24.11.2014

Anlage A 2

Tabellen

Tab. A 2-1:	Grundwasserhöhen / Ergebnisse der Stichtagsmessungen 2010 - 2014
Tab. A 2-2:	Analysenergebnisse der Grundwasserkampagne vom 21./22.08.2012
Tab. A 2-3:	Analysenergebnisse der Grundwasserkampagne vom 20./21.03.2013
Tab. A 2-4:	Analysenergebnisse der Grundwasserkampagne vom 02./05.08.2013
Tab. A 2-5:	Analysenergebnisse der Grundwasserkampagne vom 13./14.02.2014
Tab. A 2-6:	Analysenergebnisse der Grundwasserkampagne vom 08./09.09.2014
Tab. A 2-7:	Analysenergebnisse der Grundwasserkampagne vom 24./25.11.2014

Tabelle A 2-1: Grundwasserhöhen / Ergebnisse der Stichtagsmessungen 2010 bis 2014

					09.02	.2010	24.03	3.2011	23.11	1.2011	21.08	.2012	20.03	.2013	02.08	3.2013	13.02	.2014	08.04	1.2014	08.09	9.2014	24.11	1.2014
GW-Messtelle (alte Bezeichnung in Klammern)	Tiefe (m)	Quartär- mächtigk. (m)	Höhe ROK (m ü.NN)	Höhe GOK (m ü.NN)	GW (m unter ROK)	Höhe GW (m ü.NN)																		
780018	15,8		(44,61) 44,54	43,81	3,37	41,24	3,52	41,09	3,81	40,80	3,91	40,70	3,50	41,11	3,80	40,81	3,45	41,16	3,54	41,00	3,43	41,11	3,47	41,07
780054 (GWMS 2)	11,3	11,1	44,09	43,72	2,74	41,35	2,91	41,18	3,21	40,88	3,26	40,83	2,88	41,21	3,27	40,82	2,94	41,15	3,03	41,06	2,90	41,19	2,96	41,13
780055 (GWMS 1)	13	12,4	43,13	43,19	1,91	41,22	2,06	41,07	2,47	40,66	2,48	40,65	2,02	41,11	2,32	40,81	2,07	41,06	2,13	41,00	2,05	41,08	2,08	41,05
780056 (GWMS 3)	11,2	11,3	44,63/ 44,61* ⁾	44,11	3,28	41,35	3,42	41,21	3,74	40,89	3,71	40,92	3,39	41,24	3,77	40,84	3,51	41,10	3,59	41,02	3,43	41,18	3,52	41,11
780057 (GWMS 4)	11,5	11,7	43,53	43,61	3,59	39,94	3,41	40,12	3,94	39,59	3,86	39,67	3,57	39,96	3,83	39,70	3,74	39,79	3,85	39,68	3,57	39,96	3,71	39,82
780058 (GWMS 5)	11	10,9	44,52	44,02	3,21	41,31	3,34	41,18	3,68	40,84	3,69	40,83	3,33	41,19	3,67	40,85	3,42	41,10	3,51	41,01	3,36	41,16	3,43	41,09
GWM 780165			44,43	43,71	-	-	-	-	3,50	40,93	Deckel	zerstört	3,15	41,28	3,51	40,92	3,21	41,22	3,31	41,12	3,17	41,26	3,23	41,20
GWM 780164			44,71	44,00	-	-	-	-	3,91	40,80	Deckel fel	nlt, verfüllt	3,57	41,14	3,88	40,83	3,63	41,08	3,70	41,01	3,61	41,10	3,64	41,07
GWM 780166	16	15,8	42,95	43,09											2,14	40,81	1,89	41,06	1,94	41,01	1,88	41,07	1,91	41,04
GWM 780167	17,1	17	43,80	43,90											2,94	40,86	2,68	41,12	2,77	41,03	2,59	41,21	2,68	41,12
GWM 780168	16,3	16,1	44,81	44,02											4,00	40,81	3,73	41,08	3,82	40,99	3,69	41,12	3,755	41,055
GWM 780169	17,8		45,23	44,47															4,28	40,95	4,12	41,11	4,18	41,05
GWM 780170	11,8	11	42,61	42,81											3,22	39,39	3,15	39,46	3,23	39,38	2,97	39,64	3,08	39,53
GWM 780171	11,5	11	43,56	43,67											3,84	39,72	3,78	39,78	3,86	39,70	3,60	39,96	3,725	39,835
GWM 780172	19,4		45,25	44,47															4,28	40,97	4,12	41,13	4,18	41,07
GWM 780173	19,6		45,23	44,46															4,25	40,98	4,12	41,11	4,17	41,06
GWM 780174	13,5	13	44,18	44,36											3,94	40,24	3,76	40,42	3,84	40,34	3,64	40,54	3,74	40,44
780061	5	>5	44,17	43,75	2,73	41,44	2,91	41,26	3,24	40,93	3,25	40,92	2,91	41,26	3,27	40,90	2,97	41,20	3,07	41,10	2,93	41,24	3,00	41,17
780078 (GWMS 6)	13,3	13,5	43,91	44,04	2,68	41,23	2,77	41,14	3,11	40,80	3,12	40,79	2,76	41,15	3,11	40,80	2,87	41,04	2,94	40,97	2,795	41,115	2,86	41,05
780079 (GWMS 7)	13,3	12,7	43,93	44,10	2,64	41,29	2,80	41,13	3,13	40,80	3,10	40,83	2,78	41,15	3,14	40,79	2,86	41,07	2,95	40,98	2,81	41,12	2,88	41,05
780100	15	>15	44,16	44,29	3,09	41,07	3,15	41,01	3,51	40,65	3,48	40,68	3,16	41,00	3,49	40,67	3,25	40,91	3,31	40,85	3,17	40,99	3,235	40,925
780101	14,3	13,9	44,28	44,39	3,02	41,26	3,16	41,12	3,48	40,80	3,46	40,82	3,14	41,14	3,47	40,81	3,24	41,04	3,31	40,97	3,17	41,11	3,23	41,05
780110,1	11,6	>12,5	44,07	43,50	2,54	41,53	2,72	41,35	3,08	40,99	3,09	40,98	2,73	41,34	3,10	40,97	2,81	41,26	2,90	41,17	2,73	41,34	2,82	41,25
780130	12,5	12	43,86	43,99	2,57	41,29	2,71	41,15	3,04	40,82	3,06	40,80	2,70	41,16	3,03	40,83	2,78	41,08	2,86	41,00	2,72	41,14	2,795	41,065
780136-1	6,2		44,14	43,53	2,92	41,22	3,07	41,07	3,35	40,79	3,33	40,81	3,02	41,12	3,32	40,82	3,08	41,06	3,16	40,98	3,05	41,09	3,08	41,06
780136-2	12,3		44,15	43,49	2,92	41,23	3,07	41,08	3,35	40,80	3,33	40,82	3,03	41,12	3,35	40,80	3,08	41,07	3,16	40,99	3,06	41,09	3,10	41,05
780137-1	7,4		44,04	43,34	2,84	41,20	2,98	41,06	3,26	40,78	3,23	40,81	2,94	41,10	3,22	40,82	2,99	41,05	3,07	40,97	2,98	41,06	3,00	41,04
780137-2	13		43,95	43,34	2,72	41,23	2,87	41,08	3,15	40,80	3,14	40,81	2,83	41,12	3,13	40,82	2,88	41,07	2,96	40,99	2,86	41,09	2,90	41,05

 $^{^{\}star)}$ GWM 780056 ab 08/2013 mit neuer SEBA-Kappe: neue Höhe ROK 44,61 m

Grundwasserhochstand

der vollständigen Messreihen

Grundwassertiefstände

Tab. A 2-2: Analysenergebnisse der Grundwasserkampagne vom 21./22.08.2012 und Bewertungsgrundlagen

		780018	780054	780055	780	0056	780057	78	0058	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits-			
											schwellenwert
Parameter	Einheit										
Arsen	μ g /l	<10	<10	<10	<10	-	<10	<10	-	10	10
Blei	μg/l	<5	<5	<5	<5	-	<5	<5	-	25	7
Cadmium	μg/l	<0,5	<0,5	<0,5	<0,5	-	<0,5	<0,5	-	5	0,5
Chrom (ges.)	μ g /l	<5	<5	<5	<5	-	<5	<5	-	50	50
Kupfer	μ g /l	6,2	<5	<5	<5	-	21	<5	-	50	14
Nickel	μ g /l	<5	<5	<5	<5	-	<5	<5	-	50	14
Quecksilber	μg/l	<0,2	<0,2	<0,2	<0,2	-	<0,2	<0,2	-	1	0,2
Zink	μg/l	65	13	<10	<10	-	11	<10	-	500	58
KW-Index	μg/l	<100	<100	<100	<100	-	<100	<100	-	200	100
Phenol-Index 1)	μg/l	<5	<5	<5	<5	-	<5	<5	-	20	8
Summe nachgewiesener BTEX	μ g /l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener			,	,	,		,	·	,		
LHKW	μg/l	n.b.	0,52	0,72	n.b.	n.b.	n.b.	0,62	570	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,62	560		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	0,52	0,72	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	1,0	n.b.	n.b.	-	n.b.	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	0,41	n.b.	n.b.	-	n.b.	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	0,59	<0,10	<0,10	-	<0,10	<0,10	_	2	1
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	-	<0,050	<0,050	_	_	0,01
TOC	mg/l	2,4	6,7	13	15	-	2,9	2,6	_		2,2.
Chlorid	mg/l	15	9,1	31	14	-	36	19	-		250
Sulfat	mg/l	33	33	110	53	-	120	81	-		240
Nitrat	mg/l	<0,10	2,6	<0,10	0,37	-	2,6	<0,10	_		
Nitrit	mg/l	<0,050	0,16	0,24	<0,050	-	0,077	<0,050	-		
Ammonium	mg/l	<0,030	1,1	0,099	1,6	-	0,50	0,85	-		
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010	-	<0,010	<0,010	_		
Cyanid (ges.)	μg/l	<10	<10	<10	<10	-	<10	<10	_	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-2: (Forts.)

		780061	780	0078	780	0079	780	0100	780)101	780110-1	Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert						
Parameter	Einheit												
Arsen	μ g /l	<10	<10	-	<10	-	<10	-	<10	-	<10	10	10
Blei	<u>μ</u> g/l	29	<5	-	<5	-	<5	-	<5	-	<5	25	7
Cadmium	<u>μ</u> g/l	0,63	<0,50	-	<0,50	-	<0,50	-	0,50	-	0,97	5	0,5
Chrom (ges.)	<u>μ</u> g/l	7,7	<5	-	<5	-	<5	-	<5	-	<5	50	50
Kupfer	<u>μ</u> g/l	12	<5	-	<5	-	11	-	<5	-	<5	50	14
Nickel	<u>μ</u> g/l	<5	<5	_	5,5	-	<5	-	<5	_	<5	50	14
Quecksilber	μg/l	<0,2	<0,2	_	<0,2	_	<0,2	_	<0,2	_	<0,2	1	0,2
Zink	<u>μ</u> g/l	110	<10	_	15	_	41	_	<10	_	50	500	58
KW-Index	<u>μ</u> g/l	<100	<100	-	<100	_	<100	_	<100	_	<100	200	100
Phenol-Index 1)	<u>μ</u> g/l	<i>32</i>	<5	_	<5	_	<5	_	<5	_	<5	20	8
Summe nachgewiesener BTEX	μ g /l	1,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	<u>μ</u> g/l	1,0	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	-	
Ethylbenzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μ g /l	n.b.	n.b.	n.b.	0,75	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	<u>. υ</u> μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	<u>μ</u> g/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	<u>μ</u> g/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μ g /l	<0,50	<0,50	<0,50	0,75	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	2,8	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	2,8	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.	0,2	0,2
Naphthalin	<u>μ</u> g/l	<0,10	<0,10	-	<0,10	-	<0,10	-	<0,10	-	<0,10	2	1
Benzo(a)pyren	μg/l	<0,050	<0,050	_	<0,050	-	<0,050	_	<0,050	-	<0,050		0,01
TOC	mg/l	33	3,0	-	6,9	-	3,1	-	2,9	-	24		2,21
Chlorid	mg/l	26	24	_	25	_	19	_	19	_	49		250
Sulfat	mg/l	99	110	-	120	_	110	_	190	_	85	l	240
Nitrat	mg/l	1,2	<0,10	_	0,12	_	<0,10	_	<0,10	_	0,31		
Nitrit	mg/l	0,55	<0,050	_	<0,050	_	<0,050	-	<0,050	_	<0,050		
Ammonium	mg/l	1,5	0,81	_	0,94	_	0,90	_	0,85	_	0,093		
Sulfid	mg/l	<0,010	<0,010	_	<0,010	-	<0,010	-	<0,010	-	<0,010		
Cyanid (ges.)	μg/l	<10	<10	-	<10	-	<10	-	<10	-	<10	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-2: (Forts.)

		790	0130	780136-1	780137-1	Rowortung	sgrundlagen
		760	1130	780130-1	780137-1	Bewertung	sgrundiagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit						
Arsen	<u>μ</u> g/l	<10	-	<10	<10	10	10
Blei	μg/l	<5	-	<5	<5	25	7
Cadmium	<u>μ</u> g/l	<0,5	-	<0,50	<0,5	5	0,5
Chrom (ges.)	<u>μ</u> g/l	<5	-	<5	<5	50	50
Kupfer	<u>μ</u> g/l	<5	-	15	<5	50	14
Nickel	μg/l	<5	-	<5	<5	50	14
Quecksilber	μ g /l	<0,2	_	<0,2	<0,2	1	0,2
Zink	<u>μ</u> g/l	<10	-	83	25	500	58
KW-Index	<u>μ</u> g/l	<100	-	<100	<100	200	100
Phenol-Index 1)	μg/l	<5	-	<5	<5	20	8
Summe nachgewiesener BTEX	r-3''						
Camino naongo mocenci 212x	μg/l	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μ g /l	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	n.b.		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	-	n.b.	n.b.	0,2	0,2
Naphthalin	<u>μ</u> g/l	<0,10	-	<0,10	<0,10	2	1
Benzo(a)pyren	<u>μ</u> g/l	<0,050	-	<0,050	<0,050		0,01
TOC	mg/l	4,5	-	2,9	5,4		
Chlorid	mg/l	25	-	34	26		250
Sulfat	mg/l	120	-	120	85		240
Nitrat	mg/l	<0,10	-	1,4	0,52		-
Nitrit	mg/l	<0,050	-	<0,050	0,11		
Ammonium	mg/l	0,89	-	0,061	0,34		
Sulfid	mg/l	<0,010	-	<0,010	<0,010		
Cyanid (ges.)	μg/l	<10	-	<10	<10	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-3: Analysenergebnisse der Grundwasserkampagne vom 20./21.03.2013 und Bewertungsgrundlagen

		780018	780054	780055	780	0056	780057	78	0058	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert			
Parameter	Einheit										
Arsen	μg/l	<10	<10	<10	<10	-	<10	<10	-	10	10
Blei	μg/l	<5	<5	<5	<5	-	<5	<5	-	25	7
Cadmium	μg/l	<0,5	<0,5	<0,5	<0,5	-	<0,5	<0,5	-	5	0,5
Chrom (ges.)	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	50
Kupfer	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	14
Nickel	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	14
Quecksilber	μg/l	<0,2	<0,2	<0,2	<0,2	-	<0,2	<0,2	-	1	0,2
Zink	μg/l	<10	13	<10	<10	-	<10	<10	-	500	58
KW-Index	μg/l	<100	<100	<100	210	-	<100	<100	-	200	100
Phenol-Index 1)	μg/l	<5	<5	<5	<5	-	<5	<5	-	20	8
Summe nachgewiesener BTEX	μ g /l	n.b.	n.b.	n.b.	0,56	n.b.	n.b.	1,4	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	0,56	<0,50	<0,50	1,4	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μ g /l	0,82	n.b.	1,1	n.b.	0,88	2,4	0,77	1,3	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	10	20
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	0,82	<0,50	1,1	<0,50	0,88	2,4	0,77	1,3		
Summe nachgewiesener PAK (n. EPA)	μ g /l	n.b.	0,38	n.b.	n.b.	-	n.b.	n.b.	,-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	0,23	n.b.	n.b.	_	n.b.	n.b.	_	0,2	0,2
Naphthalin	μg/l	<0,10	0,15	<0,10	<0,10	<5,0	<0,10	<0,10	<5,0	2	1
Benzo(a)pyren	μg/I μg/I	<0,10	<0,050	<0,050	<0,050	-	<0,050	<0,050	-		0,01
TOC	mg/l	<1,0	4,4	<1,0	15	-	2,7	2,5	-		3,01
Chlorid	mg/l	13	8,1	30	10	-	26	19		 	
Sulfat	mg/l	35	60	100	56	-	100	76	-		
Nitrat	mg/l	0,13	8,4	<0,10	<0,10	<u>-</u>	3,8	<0,10	-		
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050	-	0,14	<0,050	_		
Ammonium	mg/l	<0,030	1,1	0,20	1,6	-	0,18	0,83	-		
Sulfid	mg/l	<0,030	<0,010	<0,010	<0,010	-	<0,010	<0,010	-		
Cyanid (ges.)	μg/l	<5	<5	<10	<5	-	<5	<5	_	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-3: (Forts.)

		780061	780	078	780	0079	780	0100	780	101	780110-1	Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	BBodSchV 1999	LAWA 2004						
												Prüfwert	Geringfügigkeits- schwellenwert
Parameter	Einheit												
Arsen	μg/l	<10	<10	-	<10	-	<10	-	<10	-	<10	10	10
Blei	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	25	7
Cadmium	μg/l	<0,50	<0,50	-	<0,50	-	<0,50	-	0,50	-	<0,50	5	0,5
Chrom (ges.)	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	50
Kupfer	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	14
Nickel	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	14
Quecksilber	μg/l	<0,2	<0,2	-	<0,2	-	<0,2	-	<0,2	-	<0,2	1	0,2
Zink	μg/l	<100	<10	-	<10	-	<10	-	<10	-	15	500	58
KW-Index	<u>μ</u> g/l	<100	<100	-	<100	-	<100	-	160	-	<100	200	100
Phenol-Index 1)	<u>μ</u> g/l	<5	<5	-	<5	-	<5	-	<5	-	<5	20	8
Summe nachgewiesener BTEX	μ g /l	12	0,85	n.b.	n.b.	n.b.	n.b.	n.b.	0,56	n.b.	n.b.	20	20
Benzol	μg/l	7,8	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	0,85	<0,50	<0,50	<0,50	<0,50	<0,50	0,56	<0,50	<0,50		
Ethylbenzol	<u>. υ</u> μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	<u>μ</u> g/l	0,62	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	<u>μ</u> g/l	3,6	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μ g /l	n.b.	n.b.	0,84	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	 μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	-	<u> </u>
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	<u>μg</u> /l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	<u>μ</u> g/l	<0,50	<0,50	0,84	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	10	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	9,48	n.b.	_	n.b.	_	n.b.	_	n.b.	_	n.b.	0,2	0,2
Naphthalin	<u>μ</u> g/l	0,52	<0,10	<5,0	<0,10	<5,0	<0,10	<5,0	<0,10	<5,0	<0,10	2	1
Benzo(a)pyren	<u>μ</u> g/l	0,081	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050	_	0,01
TOC	mg/l	9,0	3,2	-	2,9	-	3,3	_	3,9	-	4,6		-,
Chlorid	mg/l	12	20	-	23	_	15	_	12	-	4,7		
Sulfat	mg/l	14	110	-	110	_	95	_	59	-	75		
Nitrat	mg/l	<0,10	<0,10	-	<0,10	_	<0,10	_	0,71	-	1,5		
Nitrit	mg/l	<0,050	<0,050	_	<0,050	_	<0,050	_	<0,050	_	<0,050		
Ammonium	mg/l	2,0	1,1	-	0,96	_	1,1	-	1,3	_	0,61		
Sulfid	mg/l	<0,010	<0,010	-	<0,010	-	<0,010	-	<0,010	-	<0,010		
Cyanid (ges.)	μg/l	<5	<5	-	<5	_	<5	-	7,4	_	<5	50	50

Cyanid (ges.) μg/l <5 <5 - <5 -

1) Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-3: (Forts.)

		780	130	780136-1	780137-1	780164	Abwasserkanal Schacht 314	Abwasserkanal Schacht 307	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit									
Arsen	μ g /l	<10	-	<10	<10	<10	-	-	10	10
Blei	<u>μ</u> g/l	<5	-	<5	<5	5	-	-	25	7
Cadmium	μ g /l	<0,5	-	<0,50	<0,5	<0,5	-	-	5	0,5
Chrom (ges.)	μg/l	<5	-	<5	<5	<5	-	-	50	50
Kupfer	μg/l	<5	-	<5	<5	<5	-	-	50	14
Nickel	<u>μ</u> g/l	<5	-	<5	<5	<5	-	-	50	14
Quecksilber	<u>μ</u> g/l	<0,2	-	<0,2	<0,2	<0,2	-	-	1	0,2
Zink	<u>μ</u> g/l	<10	-	<10	<10	110	-	-	500	58
KW-Index	<u>μg</u> /l	<100	-	<100	<100	<100	-	-	200	100
Phenol-Index 1)	<u>μ</u> g/l	<5	-	<5	<5	<5	=	-	20	8
Summe nachgewiesener BTEX	μ g /l	n.b.	n.b.	0,58	n.b.	1,0	1,7	17	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,52	1	1
Toluol	μg/l	<0,50	<0,50	0,58	<0,50	1,0	1,7	16		
Ethylbenzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μ g /l	0,76	n.b.	n.b.	n.b.	0,67	n.b.	n.b.	10	20
Vinylchlorid	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	<u>μ</u> g/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	<u>μ</u> g/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	0,76	<0,50	<0,50	<0,50	0,67	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	n.b.	n.b.	-	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	-	n.b.	n.b.	n.b	-	-	0,2	0,2
Naphthalin	<u>μ</u> g/l	<0,10	<5,0	<0,10	<0,10	<0,10	<5,0	<5,0	2	1
Benzo(a)pyren	<u>μ</u> g/l	<0,050	-	<0,050	<0,050	<0,050	-	-		0,01
TOC	mg/l	2,8	-	<1,0	1,1	2,9				
Chlorid	mg/l	23	-	35	24	5,3				
Sulfat	mg/l	120	-	120	89	61				
Nitrat	mg/l	<0,10	-	<0,10	<0,10	0,25				
Nitrit	mg/l	<0,050	-	<0,050	<0,050	<0,050				
Ammonium	mg/l	1,1	-	0,23	0,43	0,39				
Sulfid	mg/l	<0,010	-	<0,010	<0,010	<0,010				
Cyanid (ges.)	μg/l	<5	-	<5	<5	<5	=	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-4: Analysenergebnisse der Grundwasserkampagne vom 02./05.08.2013 und Bewertungsgrundlagen

		780018	780054	780055	780	056	780057	780	0058	Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit										
Arsen	μg/l	<10	<10	<10	<10	-	<10	<10	-	10	10
Blei	μg/l	<5	<5	< 5	<5	-	<5	<5	-	25	7
Cadmium	μg/l	<0,5	<0,5	<1	<1	-	<0,5	<1	-	5	0,5
Chrom (ges.)	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	50
Kupfer	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	14
Nickel	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	14
Quecksilber	μg/l	<0,2	<0,2	<0,2	<0,2	-	<0,2	<0,2	-	1	0,2
Zink	μg/l	120	<10	<10	<10	-	<10	<10	_	500	58
KW-Index	μg/l	<100	<100	<100	<100	-	<100	<100	-	200	100
Phenol-Index 1)	μg/l	<10	<10	<5	<5	-	<5	<5	-	20	8
Summe nachgewiesener BTEX	μ g /l	n.b.	1,4	n.b.	0,54	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	† 	,
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	†	
m-,p-Xylol	μg/l	<0,50	0,66	<0,50	0,54	<0,50	<0,50	<0,50	<0,50	†	
o-Xylol	μg/l	<0,50	0,77	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	†	
Summe nachgewiesener	μ9/1	40,00	0,77	40,00	10,00	40,00	40,00	10,00	10,00	†	
LHKW	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,77	3,3	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	3,3		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,77	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	n.b.	0,78	n.b.	n.b.	-	n.b.	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	0,35	n.b.	n.b.	-	n.b.	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	0,43	<0,10	<0,10	-	<0,10	<0,10	<5,0	2	1
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	-	<0,050	<0,050	-	-	0,01
TOC	mg/l	1,5	4,6	1,2	15	-	3,9	2,6	_	1	-,0.
Chlorid	mg/l	11	6,5	28	8,4	-	29	15	_	1	250
Sulfat	mg/l	44	44	88	61	-	100	76	-	1	240
Nitrat	mg/l	<0,10	1,4	<0,10	0,23	-	<0,10	<0,10	_	1	
Nitrit	mg/l	<0,050	0,25	<0,050	0,082	-	0,54	<0,050	-	†	
Ammonium	mg/l	<0,030	0,99	0,20	1,8	-	0,41	0,75	_	1	
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010	-	<0,010	<0,010	_	1	
Cyanid (ges.)	μg/l	11	<5	<5	<5	-	<5	<5	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-4: (Forts.)

		780061	780	078	780	0079	780	0100	780	101	780110-1	Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	BBodSchV 1999	LAWA 2004
												Prüfwert	Geringfügigkeits- schwellenwert
Parameter	Einheit												
Arsen	μ g /l	<10	<10	-	<10	-	<10	-	<10	-	<10	10	10
Blei	μ g /l	<5	<5	-	<5	-	<5	-	<5	-	<5	25	7
Cadmium	μ g /l	<1	<1	-	<1	-	<1	-	<1	-	<0,50	5	0,5
Chrom (ges.)	μ g /l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	50
Kupfer	μg/l	16	<5	-	<5	-	< 5	-	<5	-	<5	50	14
Nickel	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	14
Quecksilber	μg/l	<0,2	<0,2	-	<0,2	-	<0,2	-	<0,2	-	<0,2	1	0,2
Zink	μ g /l	470	<10	-	<10	-	<10	-	<10	-	17	500	58
KW-Index	μ g /l	<100	<100	-	<100	-	<100	-	160	-	<100	200	100
Phenol-Index 1)	<u>μ</u> g/l	<5	<5	-	<5	-	<5	-	<5	-	<5	20	8
Summe nachgewiesener BTEX	μg/l	13	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,56	n.b.	n.b.	20	20
Benzol	μ g /l	10	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,56	<0,50	<0,50		
Ethylbenzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	<u>μ</u> g/l	1,5	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	<u>μ</u> g/l	1,4	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μ g /l	n.b.	n.b.	0,84	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	<u>μg</u> /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	-	
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	<u>μ</u> g/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	<u>μ</u> g/l	<0,50	<0,50	0,84	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	5,6	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	5,18	n.b.	_	n.b.	_	n.b.	_	n.b.	_	n.b.	0,2	0,2
Naphthalin	<u>μ</u> g/l	0,42	<5,0	<5,0	<0,10	<5,0	<0,10	<5,0	<0,10	<5,0	<0,10	2	1
Benzo(a)pyren	<u>μ</u> g/l	<0,050	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050	_	0,01
TOC	mg/l	8,2	3,2	-	3,4	_	3,2	_	2,1	-	3,8		-,
Chlorid	mg/l	21	19	-	22	_	13	_	10	-	7,0		250
Sulfat	mg/l	81	94	-	100	_	100	_	250	-	69		240
Nitrat	mg/l	3,4	<0,10	-	0,19	_	0,25	_	0,23	-	0,63		
Nitrit	mg/l	1,1	<0,050	_	0,083	_	<0,050	-	0,22	_	0,59		
Ammonium	mg/l	2,3	0,96	-	0,94	_	1,0	-	0,73	_	0,54		
Sulfid	mg/l	<0,010	<0,010	-	<0,010	-	<0,010	-	<0,010	-	<0,010		
Cyanid (ges.)	μg/l	<5	<5	-	<5	_	<5	-	7,4	_	<5	50	50

Cyanid (ges.) μg/l <5 <5 - <5 -

1) Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-4: (Forts.)

		780)130	780136-1	780137-1	780164	780)166	780	167	780	0168	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits -schwellenwert
Parameter	Einheit													
Arsen	μ g /l	<10	-	<10	<10	<10	<10	-	<10	-	<10	-	10	10
Blei	μg/l	<5	-	<5	<5	5	5	-	5	-	5	-	25	7
Cadmium	μg/l	<1	-	<1	<1	<0,5	<1	-	<1	-	<0,5	-	5	0,5
Chrom (ges.)	μg/l	<5	-	<5	<5	<5	<5	-	<5	-	<5	-	50	50
Kupfer	μg/l	<5	-	<5	<5	< 5	<5	-	<5	-	< 5	-	50	14
Nickel	μg/l	<5	-	<5	<5	<5	<5	-	<5	=	<5	-	50	14
Quecksilber	μ g /l	<0,2	-	<0,2	<0,2	<0,2	<0,2	-	<0,2	-	<0,2	-	1	0,2
Zink	μ g /l	11	-	13	36	22	<10	-	<10	-	<10	-	500	58
KW-Index	μ g /l	<100	-	<100	<100	<100	<100	-	<100	=	<100	-	200	100
Phenol-Index 1)	<u>μ</u> g/l	<5	-	<5	<5	<5	<5	-	<5	-	<5	-	20	8
Summe nachgewiesener BTEX	μ g /l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	120	17	20	20
Benzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,79	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1,3	1,8		
Ethylbenzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	7,0	1,3		
m-,p-Xylol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	110	14		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1,1	<0,50		
Summe nachgewiesener LHKW	μ g /l	n.b.	n.b.	n.b.	n.b.	0,67	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μ g /l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	<u>μg</u> /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μ g /l	<0,50	<0,50	<0,50	<0,50	0,67	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	n.b.	-	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	-	7,2	7,77		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	_	n.b.	n.b.	n.b	n.b.	n.b.	n.b.	-	n.b.		0,2	0,2
Naphthalin	<u>μ</u> g/l	<0,10	<5,0	<0,10	<0,10	<0,10	<0,10	<5	<0,10	<5	7,2		2	1
Benzo(a)pyren	<u>μ</u> g/l	<0,050	-	<0,050	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	_		0,01
TOC	mg/l	3,2	_	1,5	1,3	3,6	<1,0	-	3,6	-	2,8	_	1	-,
Chlorid	mg/l	20	_	36	23	7,9	22	_	34	-	3,2	_		250
Sulfat	mg/l	97	_	100	87	44	77	-	170	-	19	_		240
Nitrat	mg/l	0,15	-	0,56	0,14	1,6	<0,10	-	<0,10	-	0,18	-		
Nitrit	mg/l	0,059	_	<0,050	<0,050	<0,050	<0,050	_	<0,050	-	<0,050	_		
Ammonium	mg/l	0,97	_	0,21	0,33	0,43	0,042	_	0,14	-	0,38	_		
Sulfid	mg/l	<0,010	_	<0,010	<0,010	<0,010	<0,010	-	<0,010	-	<0,010	_		
Cyanid (ges.)	μ g /l	<5	_	<5	<5	<5	<5	_	<5	_	<5	_	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-4: (Forts.)

		780170	780171		780174		Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	Sohle GWM	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit							
Arsen	μ g /l	<10	<10	<10	-	-	10	10
Blei	μg/l	<5	<5	5	-	-	25	7
Cadmium	μg/l	<0,5	<0,5	<0,5	-	-	5	0,5
Chrom (ges.)	μg/l	<5	<5	<5	-	-	50	50
Kupfer	μg/l	<5	<5	<5	-	-	50	14
Nickel	μg/l	<5	<5	<5	-	-	50	14
Quecksilber	μ g /l	<0,2	<0,2	<0,2	-	-	1	0,2
Zink	μ g /l	12	17	<10	-	-	500	58
KW-Index	μ g /l	<100	<100	<100	-	-	200	100
Phenol-Index 1)	<u>μ</u> g/l	<5	<5	<5	-	-	20	8
Summe nachgewiesener BTEX	μg/l	n.b.	n.b.	n.b.	2,4	1,4	20	20
Benzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	<0,50	<0,50	2,4	1,4		
Ethylbenzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μ g /l	0,68	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	<u>μ</u> g/l	0,68	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	n.b.	n.b.	n-b.	-	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	n.b.	n.b.	-	-	0,2	0,2
Naphthalin	<u>μ</u> g/l	<0,10	<0,10	<0,10	<5,0	<5,0	2	1
Benzo(a)pyren	<u>μ</u> g/l	<0,050	<0,050	<0,050	-	-	1	0,01
TOC	mg/l	1,5	1,3	2,8	-	-		
Chlorid	mg/l	36	23	15	-	-		250
Sulfat	mg/l	100	87	110	-	-		240
Nitrat	mg/l	0,56	0,14	0,21	-	-	1	
Nitrit	mg/l	<0,050	<0,050	0,055	-	-		
Ammonium	mg/l	0,21	0,33	0,89	-	-	1	
Sulfid	mg/l	<0,010	<0,010	<0,010	-	-		
Cyanid (ges.)	μg/l	<5	<5	<5	-	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Boden · Wasser · UVS · Abfall · Altlasten

Gesellsc
für angewandte Geowisenschang
in Umwelt- und Stadtforschung

Tab. A 2-5: Analysenergebnisse der Grundwasserkampagne vom 13./14.02.2014 und Bewertungsgrundlagen

		780018	780054	780055	780	0056	780057	780	0058	Bewertungsgrundlagen	
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert			
Parameter	Einheit										
Arsen	μg/l	<10	<10	<10	<10	-	<10	<10	-	10	10
Blei	μg/l	<5	<5	<5	<5	-	<5	<5	-	25	7
Cadmium	μg/l	<0,5	<0,5	<1	<1	-	<0,5	<1	-	5	0,5
Chrom (ges.)	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	50
Kupfer	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	14
Nickel	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	14
Quecksilber	μg/l	<0,2	<0,2	<0,2	<0,2	-	<0,2	<0,2	-	1	0,2
Zink	μg/l	<10	18	<10	<10	-	<10	<10	-	500	58
KW-Index	μg/l	<100	<100	<100	<100	<500	<100	<100	<500	200	100
LAK	μg/l	-	-	-	-	<50	-	-	<50		
Phenol-Index 1)	μg/l	<5	<5	<5	<5	-	<5	<5	-	20	8
Summe nachgewiesener											
BTEX	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μg/l	n.b.	n.b.	n.b.	0,66	n.b.	n.b.	n.b.	8,6	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	8,6		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	0,66	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	n.b.	0,12	n.b.	n.b.	-	n.b.	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	0,12	n.b.	n.b.	-	n.b.	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10	-	<0,10	<0,10	<5,0	2	1
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	-	<0,050	<0,050	-		0,01
TOC	mg/l	1,4	1,5	1,1	15	-	3,6	2,6	-		
Chlorid	mg/l	11	6,0	29	9,8	-	32	15	-		250
Sulfat	mg/l	35	96	92	69	-	110	90	-		240
Nitrat	mg/l	0,21	11	<0,10	0,12	-	3,0	<0,10	-		
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050	-	<0,050	<0,050	-		
Ammonium	mg/l	<0,030	0,83	0,17	1,7	-	0,42	0,75	-		
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010	-	<0,010	<0,010	-		
Cyanid (ges.)	μg/l	<5	<5	<5	<5	-	<5	6,7	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-5: (Forts.)

		780061	780	0078	780	0079	780	0100	780)101	780110-1	Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert						
Parameter	Einheit												
Arsen	μg/l	<10	<10	-	<10	-	<10	-	<10	-	<10	10	10
Blei	μg/l	<5	<5	-	<5	_	<5	-	<5	-	<5	25	7
Cadmium	μ g /l	<1	<1	_	<1	_	<1	-	<1	-	<0,50	5	0,5
Chrom (ges.)	μ g /l	<5	6,3	_	<5	_	<5	-	<5	-	<5	50	50
Kupfer	μ g /l	<5	<5	_	<5	_	<5	-	<5	-	<5	50	14
Nickel	μ g /l	<5	<5	_	<5	_	<5	_	<5	_	<5	50	14
Quecksilber	μ g /l	<0,2	<0,2	_	<0,2	_	<0,2	_	<0,2	_	<0,2	1	0,2
Zink	μg/l	11	<10	_	<10	_	<10	_	<10	_	17	500	58
KW-Index	μg/l	<100	<100	<500	<100	<500	<100	<500	<100	<500	<100	200	100
LAK	μg/l	-	-	<50	-	<50	-	<50	-	<50	-		
Phenol-Index 1)	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	20	8
Summe nachgewiesener	μдл	~~	ζ.				~~					20	
BTEX	μg/l	5,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,56	n.b.	n.b.	20	20
Benzol	μg/l	5,6	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,56	<0,50	<0,50		
Ethylbenzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μ g /l	1,5	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	1,4	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener	F-9	.,.	10,00	10,00	10,00	10,00	12,22	,	,	10,00	,		
LHKW	μg/l	n.b.	n.b.	0,84	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μ g /l	<0,50	<0,50	0,84	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	2,8	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.		
Summe nachgewiesener PAK													
(n. EPA ohne Naphthalin)	μg/l	2,38	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.	0,2	0,2
Naphthalin	μg/l	0,42	<5,0	<5,0	<0,10	<5,0	<0,10	<5,0	<0,10	<5,0	<0,10	2	1
Benzo(a)pyren	μg/l	<0,050	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050		0,01
TOC	mg/l	6,7	4,2	-	4,0	-	3,5	-	4,1	-	4,5		
Chlorid	mg/l	12	16	-	21	-	13	-	18	-	7,4		250
Sulfat	mg/l	66	110	-	120	-	99	-	100	-	58		240
Nitrat	mg/l	<0,10	<0,10	-	<0,10	-	0,14	-	<0,10	-	4,1		
Nitrit	mg/l	<0,050	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050		
Ammonium	mg/l	2,1	1,1	-	0,94	-	1,0	-	1,3	-	0,33		
Sulfid	mg/l	<0,010	<0,010	-	<0,010	-	<0,010	-	<0,010	-	<0,010		
Cyanid (ges.)	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	50

Tab. A 2-5: (Forts.)

		780	130	780136-1	780137-1	780164	780)166	780)167	Bewertungs	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits -schwellenwert			
Parameter	Einheit											
Arsen	μ g /l	<10	-	<10	<10	<10	<10	-	<10	-	10	10
Blei	μg/l	<5	-	<5	<5	5	5	-	5	-	25	7
Cadmium	μg/l	<1	-	<1	<1	<0,5	<1	-	<1	-	5	0,5
Chrom (ges.)	μg/l	<5	-	<5	<5	<5	<5	-	<5	-	50	50
Kupfer	μg/l	<5	-	<5	<5	<5	<5	-	<5	-	50	14
Nickel	μg/l	<5	-	<5	<5	<5	<5	-	<5	-	50	14
Quecksilber	<u>μ</u> g/l	<0,2	-	<0,2	<0,2	<0,2	<0,2	-	<0,2	-	1	0,2
Zink	<u>μ</u> g/l	<10	-	25	<10	22	<10	-	<10	-	500	58
KW-Index	<u>μ</u> g/l	<100	<500	<100	<100	<100	<100	<500	<100	<500	200	100
LAK	<u>μ</u> g/l	-	<50	-	-	-	-	<50	-	<50		
Phenol-Index 1)	<u>μ</u> g/l	<5	-	<5	<5	<5	<5	-	<5	-	20	8
Summe nachgewiesener BTEX	μ g /l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	-	
Ethylbenzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener	p.g.	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00		
LHKW	μg/l	0,65	n.b.	n.b.	n.b.	0,67	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	0,65	<0,50	<0,50	<0,50	0,67	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	-	n.b.	n.b.	n.b	n.b.	n.b.	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	<5,0	<0,10	<0,10	<0,10	<0,10	<5	<0,10	<5	2	1
Benzo(a)pyren	μg/l	<0,050	-	<0,050	<0,050	<0,050	<0,050	-	<0,050	-		0,01
TOC	mg/l	3,1	-	1,8	1,8	3,6	1,1	-	2,6	-		
Chlorid	mg/l	18	-	34	26	7,9	23	-	29	-		250
Sulfat	mg/l	110	-	120	120	44	89	-	170	-		240
Nitrat	mg/l	<0,10	-	0,16	<0,10	1,6	<0,10	-	<0,10	-		
Nitrit	mg/l	<0,050	-	<0,050	<0,050	<0,050	<0,050	-	<0,050	-		
Ammonium	mg/l	1,0	-	0,26	0,40	0,43	0,088	-	0,19	-		
Sulfid	mg/l	<0,010	-	<0,010	<0,010	<0,010	<0,010	-	<0,010	-		
Cyanid (ges.)	μg/l	<5	-	<5	<5	<5	<5	-	<5	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-5: (Forts.)

		780168 (1. B	eprobung) ²⁾	780168 (2. E	Beprobung) ³⁾	780168 (3. E	Beprobung) ⁴⁾	780)169	780170	780171	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit												
Arsen	μg/l	<10	_	<10	-	<10	-	<10	-	<10	<10	10	10
Blei	<u>μ</u> g/l	5	-	5	-	5	-	5	-	<5	<5	25	7
Cadmium	<u>μ</u> g/l	<0,5	-	<0,5	-	<0,5	-	<0,5	-	<0,5	<0,5	5	0,5
Chrom (ges.)	<u>μ</u> g/l	<5	-	<5	-	<5	-	<5	-	<5	<5	50	50
Kupfer	<u>μ</u> g/l	<5	-	<5	-	<5	-	<5	-	<5	<5	50	14
Nickel	<u>μ</u> g/l	<5	_	<5	_	<5	_	<5	_	5,8	<5	50	14
Quecksilber	<u>μ</u> g/l	<0,2	_	<0,2	_	<0,2	_	<0,2	_	<0,2	<0,2	1	0,2
Zink	μ g /l	<10	_	<10	_	35	_	13	_	12	17	500	58
KW-Index	μg/l	<100	<500	<100	<500	<100	<500	<100	<500	<100	<100	200	100
LAK	<u>μ</u> g/l	-	<50	-	<50	-	<50	-	<50	-	-	 	
Phenol-Index 1)	<u>μ</u> g/l	<5	-	<5	-	<5	-	<5	-	<5	<5	20	8
Summe nachgewiesener BTEX	μ g /l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	9,8	n.b.	n.b.	20	20
Benzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	2,0	<0,50	<0,50		
m-,p-Xylol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	5,1	<0,50	<0,50		
o-Xylol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	2,7	<0,50	<0,50		
Summe nachgewiesener			-,	-,	2,722	-,	-,	-,	,	-,	.,		
LHKW	μg/l	0,90	n.b.	n.b.	n.b.	0,58	n.b.	n.b.	n.b.	0,62	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,62	<0,50		
Tetrachlorethen	μg/l	0,90	<0,50	<0,50	<0,50	0,58	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.	n.b.		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.	n.b.	0,2	0,2
Naphthalin	μ g /l	<0,10	<5	<0,10	<5	<0,10	<5	<0,10	<5	<0,10	<0,10	2	1
Benzo(a)pyren	μg/l	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050	<0,050		0,01
TOC	mg/l	2,6	-	3,4	-	3,2	-	5,0	_	2,7	3,6		
Chlorid	mg/l	3,3	-	11	-	3,1	-	17	-	12	36		250
Sulfat	mg/l	34	-	74	-	29	-	53	-	100	180		240
Nitrat	mg/l	<0,10	-	<0,10	-	<0,10	-	3,2	-	9,8	0,52		
Nitrit	mg/l	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050	<0,050		
Ammonium	mg/l	0,31	-	0,34	-	0,34	-	1,1	-	0,048	0,92		
Sulfid	mg/l	<0,010	-	<0,010	-	<0,010	-	<0,010	-	<0,010	<0,010		
Cyanid (ges.)	μg/l	<5	-	<5	-	<5	-	<5	-	<5	<5	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

²⁾ 1. Beprobung am 13.02.2014 um 9.00 Uhr nach Klarpumpen, ³⁾ 2. Beprobung am 13.02.2014 um 13.45 Uhr nach 4 Stunden Pumpen, ⁴⁾ 3. Beprobung am 14.02.2014 um 7.45 Uhr nach ca. 18 Stunden Ruhe

Tab. A 2-5: (Forts.)

		780	0172	780	173	78	0174	Bewertung	jsgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit								
Arsen	μg/l	<10	-	<10	-	<10	-	10	10
Blei	μg/l	5	-	10	-	<5	-	25	7
Cadmium	μg/l	<0,5	-	<0,5	-	<0,5	-	5	0,5
Chrom (ges.)	μg/l	<5	-	8,1	-	<5	-	50	50
Kupfer	μg/l	<5	-	<5	-	<5	-	50	14
Nickel	μg/l	<5	-	<5	-	<5	-	50	14
Quecksilber	μg/l	<0,2	-	<0,2	-	<0,2	-	1	0,2
Zink	μg/l	<10	-	19	-	44	-	500	58
KW-Index	μg/l	<100	<500	<100	<500	<100	<500	200	100
LAK	μg/l	-	<50	-	<50	-	<50		
Phenol-Index 1)	μg/l	<5	-	<5	-	<5	-	20	8
Summe nachgewiesener BTEX	μg/l	n.b.	n.b.	n.b.	7,7	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	1,3	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	4,0	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	2,4	<0,50	<0,50		
Summe nachgewiesener LHKW	μg/l	n.b.	n.b.	0,68	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	0,68	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	-	-	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	-	n.b.	-	-	-	0,2	0,2
Naphthalin	μg/l	<0,10	<5	<0,10	<5	<5,0	<5,0	2	1
Benzo(a)pyren	μg/l	<0,050	-	<0,050	-	<0,050	-		0,01
TOC	mg/l	4,8	-	4,2	-	2,3	-		
Chlorid	mg/l	10	-	16	-	17	-		250
Sulfat	mg/l	100	-	100	-	140	-		240
Nitrat	mg/l	3,4	-	2,0	-	<0,10	-		
Nitrit	mg/l	<0,050	-	<0,050	-	0,055	-		
Ammonium	mg/l	0,57	-	0,80	-	0,90	-		
Sulfid	mg/l	<0,010	-	<0,010	-	<0,010	-		
Cyanid (ges.)	μg/l	<5	-	<5	-	<5	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-6: Analysenergebnisse der Grundwasserkampagne vom 08./09.09.2014 und Bewertungsgrundlagen

		780018	780054	780055	780	0056	780057	786	0058	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert			
Parameter	Einheit										
Arsen	μg/l	<10	<10	<10	<10	-	<10	<10	-	10	10
Blei	μg/l	<5	<5	<5	<5	-	<5	<5	-	25	7
Cadmium	μ g /l	<0,5	<0,5	<0,5	<1	-	<0,5	<0,5	-	5	0,5
Chrom (ges.)	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	50
Kupfer	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	14
Nickel	μ g /l	<5	<5	<5	<5	-	<5	<5	-	50	14
Quecksilber	μ g /l	<0,2	<0,2	<0,2	<0,2	-	<0,2	<0,2	-	1	0,2
Zink	μ g /l	<10	15	<10	<10	-	<10	<10	-	500	58
KW-Index	μg/l	<100	<100	<100	<100	<100	<100	<100	<400	200	100
LAK	μ g /l	-	-	-	-	<50	-	-	<50		
Phenol-Index 1)	μ g /l	<5	<5	<5	<5	-	<5	<5	-	20	8
Summe nachgewiesener											
BTEX	μ g /l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	630	10	20
Vinylchlorid	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μ g /l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μ g /l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	590		
Tetrachlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	n.b.	0,11	n.b.	n.b.	-	n.b.	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	0,11	n.b.	n.b.	-	n.b.	n.b.	-	0,2	0,2
Naphthalin	μ g /l	<0,10	<0,10	<0,10	<0,10	-	<0,10	<0,10	-	2	1
Benzo(a)pyren	μg/l	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050			
TOC	mg/l	1,9	4,2	1,3	16	-	4,0	2,6	-		
Chlorid	mg/l	11	8,0	24	15	-	24	16	-		250
Sulfat	mg/l	35	74	88	82	-	100	79	-		240
Nitrat	mg/l	<0,10	5,0	<0,10	0,12	-	2,1	<0,10	-		
Nitrit	mg/l	<0,10	<0,050	<0,050	<0,050	-	<0,050	<0,050	-		
Ammonium	mg/l	0,097	0,99	0,19	1,9	-	0,72	0,76	-		
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010	-	<0,010	<0,010	-		
Cyanid (ges.)	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-6: (Forts.)

		700064	700	0070	700	1070	700	1100	70/	1404	700110.1	Payra utum a	
		780061	780	0078	/80	0079	780	100	780	0101	780110-1	Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert						
Parameter	Einheit												
Arsen	μg/l	<10	<10	-	<10	-	<10	-	<10	-	<10	10	10
Blei	μg/l	27	<5	-	<5	-	<5	-	<5	-	<5	25	7
Cadmium	μg/l	<0,5	<1	-	<1	-	<0,5	-	<0,5	-	<0,50	5	0,5
Chrom (ges.)	μ g /l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	50
Kupfer	<u>μ</u> g/l	14	<5	-	<5	-	<5	-	<5	-	<5	50	14
Nickel	<u>μ</u> g/l	<5	<5	-	<5	_	<5	-	<5	-	<5	50	14
Quecksilber	<u>μ</u> g/l	<0,2	<0,2	_	<0,2	_	<0,2	_	<0,2	-	<0,2	1	0,2
Zink	 μg/l	340	<10	_	<10	_	<10	_	<10	_	16	500	58
KW-Index	<u>μ</u> g/l	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	200	100
LAK	<u>μ</u> g/l	-	-	<50	-	<50	-	<50	-	<50	-	1	
Phenol-Index 1)	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	20	8
Summe nachgewiesener BTEX	μ g /l	6,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	1,2.	n.b.	20	20
Benzol	<u>μg</u> /l	5,2	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1,2	<0,50		
Ethylbenzol	<u>μg</u> /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	<u>μg</u> /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μ g /l	1,0	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener	μ9,1	1,0	10,00	40,00	10,00	40,00	10,00	40,00	10,00	10,00	40,00	<u> </u>	
LHKW	μg/l	n.b.	0,63	n.b.	0,64	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	<u>. υ</u> μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	0,63	<0,50	0,64	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μ g /l	2,8	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.		
Summe nachgewiesener PAK													
(n. EPA ohne Naphthalin)	μ g /l	2,61	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.	0,2	0,2
Naphthalin	μg/l	0,19	<0,10	-	<0,10	-	<0,10	-	<0,10	-	<0,10	2	1
Benzo(a)pyren	μg/l	<0,050	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050		0,01
TOC	mg/l	8,9	3,1	-	3,3	-	3,5	-	4,1	-	5,4		
Chlorid	mg/l	9,0	12	-	18	-	13	-	15	-	2,0		250
Sulfat	mg/l	16	120	-	120	-	110	-	110	-	28		240
Nitrat	mg/l	0,28	<0,10	-	<0,10	-	<0,10	-	0,26	-	0,37		
Nitrit	mg/l	<0,050	<0,050	-	<0,050	-	<0,050	-	<0,050	-	<0,050	ļ	
Ammonium	mg/l	2,1	1,1	-	1,0	-	1,0	-	1,2	-	0,29		
Sulfid	mg/l	<0,010	<0,010	-	<0,010	-	<0,010	-	<0,010	-	<0,010		
Cyanid (ges.)	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-6: (Forts.)

		780	130	780136-1	780137-1	780	166	780	0167	780	168	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit												<u>E</u>
Arsen	μ g /l	<10	-	<10	<10	<10	-	<10	-	<10	-	10	10
Blei	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	25	7
Cadmium	<u>μ</u> g/l	<1	-	<0,5	<1	<0,5	-	<0,5	-	<0,5	-	5	0,5
Chrom (ges.)	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	50	50
Kupfer	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	50	14
Nickel	<u>μg</u> /l	<5	-	<5	<5	<5	-	<5	_	<5	-	50	14
Quecksilber	<u>μ</u> g/l	<0,2	-	<0,2	<0,2	<0,2	-	<0,2	_	<0,2	-	1	0,2
Zink	μ g /l	<10	-	16	<10	<10	-	<10	_	<10	-	500	58
KW-Index	μ g /l	<100	<100	<100	<100	<100	<100	<100	<100	<100	160	200	100
LAK	μg/l	-	<50	-	-	-	<50	-	<50	-	<50	 	
Phenol-Index 1)	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	20	8
Summe nachgewiesener BTEX	<u>μ</u> g/l	n.b.	n.b.	n.b.	n.b.	n.b.	1,0	n.b.	n.b.	36	29	20	20
Benzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,77	<0,50	1	1
Toluol	<u>μg</u> /l	<0,50	<0,50	<0,50	<0,50	<0,50	1,0	<0,50	<0,50	0,85	0,95		-
Ethylbenzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	13	4,0		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	21	24		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener	μ9	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00		
LHKW	μg/l	n.b.	1,5	0,99	0,69	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	1,5	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	0,99	0,69	<0,50	<0,50	<0,50	<0,50	0,85	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	n.b.	n.b.	-	n.b.	-	1,9	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μ g /l	n.b.	-	n.b.	n.b.	n.b.	-	n.b.	-	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	-	<0,10	<0,10	<0,10	-	<0,10	-	1,9	-	2	1
Benzo(a)pyren	μ g /l	<0,050	-	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	-		0,01
TOC	mg/l	3,2	-	2,0	2,0	<1,0	-	3,9	-	3,3	-		
Chlorid	mg/l	9,3	-	24	15	15	-	14	-	4,4	-		250
Sulfat	mg/l	77	-	100	59	49	-	100	-	28	-		240
Nitrat	mg/l	<0,10	-	0,17	3,8	<0,10	-	<0,10	-	0,26	-		
Nitrit	mg/l	<0,050	-	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	-		
Ammonium	mg/l	0,96	-	0,13	0,31	<0,060	-	0,36	-	0,43	-		
Sulfid	mg/l	<0,010	-	<0,010	<0,010	<0,010	-	<0,010	-	<0,010	-		
Cyanid (ges.)	<u>σ</u> μg/l	<5	_	<5	<5	<5	_	<5	_	<5	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-6: (Forts.)

		780)169	780170	780171	780)172	780)173	780)174	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit												
Arsen	μg/l	<10	-	<10	<10	<10	-	<10	-	<10	-	10	10
Blei	μg/l	<5	-	<5	<5	<5	-	< 5	-	<5	-	25	7
Cadmium	μg/l	<0,5	-	<0,5	<0,5	<0,5	-	<0,5	-	<0,5	-	5	0,5
Chrom (ges.)	μg/l	<5	-	<5	<5	<5	-	< 5	-	<5	-	50	50
Kupfer	μg/l	<5	-	<5	<5	<5	-	< 5	-	<5	-	50	14
Nickel	μg/l	<5	-	10	<5	<5	-	< 5	-	<5	-	50	14
Quecksilber	μg/l	<0,2	-	<0,2	<0,2	<0,2	-	<0,2	-	<0,2	-	1	0,2
Zink	μg/l	<10	-	<10	<10	<10	-	14	-	<10	-	500	58
KW-Index	μg/l	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	200	100
LAK	μg/l	-	<50	-	<50	-	<50	-	<50	-	<50		
Phenol-Index 1)	μg/l	<5	-	<5	<5	<5	-	<5	-	<5	-	20	8
Summe nachgewiesener	1.3												-
BTEX	μg/l	n.b.	1,3	n.b.	n.b.	n.b.	1,2	n.b.	n.b.	n.b.	0,74	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	1,2	<0,50	<0,50	<0,50	0,74		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	1,3	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μg/l	n.b.	5,4	0,85	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	5,4	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	0,85	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	-	<0,10	<0,10	<0,10	-	<0,10	-	<0,10	-	2	1
Benzo(a)pyren	μg/l	<0,050	-	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	-		0,01
TOC	mg/l	5,2	-	3,2	3,3	5,5	-	4,0	-	2,3	-		, , , , , , , , , , , , , , , , , , ,
Chlorid	mg/l	6,7	-	12	41	7,2	-	8,5	-	16	-		250
Sulfat	mg/l	48	-	130	240	110	-	92	-	160	-		240
Nitrat	mg/l	0,13	-	17	0,62	0,10	_	0,15	-	<0,10	_		-
Nitrit	mg/l	<0,050	_	0,11	<0,050	<0,050	-	<0,050	-	<0,050	-		
Ammonium	mg/l	0,78	-	0,34	0,98	0,45	_	1,0	-	0,73	-		
Sulfid	mg/l	<0,010	_	<0,010	<0,010	<0,010	_	<0,010	-	<0,010	-		
Cyanid (ges.)	μg/l	<5	_	<5	<5	<5	_	<5	_	<5	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-7: Analysenergebnisse der Grundwasserkampagne vom 24./25.11.2014 und Bewertungsgrundlagen

		780018	780054	780055	780	0056	780057	786	0058	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert			
Parameter	Einheit										
Arsen	μg/l	<10	<10	<10	<10	-	<10	<10	-	10	10
Blei	μg/l	<5	<5	<5	<5	-	<5	<5	-	25	7
Cadmium	μg/l	<0,5	<0,5	<0,5	<0,5	-	<0,5	<0,5	-	5	0,5
Chrom (ges.)	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	50
Kupfer	μg/l	<5	<5	<5	<5	=	<5	<5	-	50	14
Nickel	μg/l	<5	7,5	<5	<5	-	<5	<5	-	50	14
Quecksilber	μg/l	<0,2	<0,2	<0,2	<0,2	=	<0,2	<0,2	-	1	0,2
Zink	μg/l	<10	17	<10	<10	=	<10	<10	-	500	58
KW-Index	μg/l	<100	<100	<100	<100	<100	<100	<100	1400	200	100
LAK	μg/l	-	-	-	-	<50	-	-	<50		
Phenol-Index 1)	μg/l	<5	<5	<5	<5	ı	<5	<5	-	20	8
Summe nachgewiesener BTEX		n h	0.4	n h	n h	2 9	n h	n h	n h	20	20
	μg/l	n.b.	2,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	0,96	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	1,4	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener LHKW	μg/l	n.b.	n.b.	n.b.	n.b.	0,60	n.b.	n.b.	290	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	280		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	0,60	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	0,17	n.b.	n.b.	-	n.b.	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	0,17	n.b.	n.b.	_	n.b.	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10	-	<0,10	<0,10	-	2	1
Benzo(a)pyren	μg/l	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050			
TOC	mg/l	1,8	4,5	1,3	16	-	3,5	2,1	-		
Chlorid	mg/l	11	7,3	29	16	-	31	15	-		250
Sulfat	mg/l	26	51	110	61	-	100	78	-		240
Nitrat	mg/l	<0,10	1,8	<0,10	0,24	-	2,4	<0,10	-		
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050	-	<0,050	<0,050	-		
Ammonium	mg/l	0,11	1,3	0,19	1,9	-	0,63	0,83	-		
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010	-	<0,010	<0,010	-		
Cyanid (ges.)	μg/l	<5	<5	<5	<5	-	<5	<5	-	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-7: (Forts.)

		780061	780	078	780	0079	780	0100	780	0101	780110-1	Bewertung	sgrundlagen
		2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit												
Arsen	μ g /l	<10	<10	-	<10	_	<10	_	<10	-	<10	10	10
Blei	μ g /l	58	<5	-	<5	-	<5	-	<5	_	<5	25	7
Cadmium	μ g /l	<1	<1	_	<1	_	<0,5	_	<0,5	_	<0,50	5	0,5
Chrom (ges.)	μ g /l	7,6	<5	-	<5	-	<5	-	<5	-	<5	50	50
Kupfer	μ g /l	39	12	-	<5	-	<5	-	<5	-	<5	50	14
Nickel	μ g /l	6,7	<5	_	<5	_	<5	_	<5	_	5	50	14
Quecksilber	μg/l	<0,2	<0,2	-	<0,2	_	<0,2	-	<0,2	_	<0,2	1	0,2
Zink	μ g /l	670	<10	-	12	_	<10	_	<10	_	20	500	58
KW-Index	μg/l	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	200	100
LAK	μg/l	-	-	<50	-	<50	-	<50	-	<50	-		
Phenol-Index 1)	μg/l	<5	<5	-	<5	-	<5	-	<5	-	<5	20	8
Summe nachgewiesener BTEX	μ g /l	4,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	1,2.	n.b.	20	20
Benzol	μ g /l	3,9	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	0,61	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1,2	<0,50	-	
Ethylbenzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener	بروی،	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00		
LHKW	μg/l	n.b.	n.b.	n.b.	1,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	1,2	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	4,0	n.b.	-	n.b.	-	n.b.	-	n.b.	-	n.b.		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	3,86	n.b.	-	n.b.	-	n.b.	-	n.b.	_	n.b.	0,2	0,2
Naphthalin	μg/l	0,14	<0,10	-	<0,10	-	<0,10	-	<0,10	-	<0,10	2	1
Benzo(a)pyren	μg/l μg/l	<0,050	<0,050	-	<0,10	<u>-</u>	<0,10	-	<0,050	<u>-</u>	<0,10		0,01
TOC	μg/l mg/l	4,2	3,1	-	3,6	_	3,2	-	4,0	-	5,5		0,01
Chlorid	mg/l	7,3	14	-	19	<u>-</u>	11	-	18	<u>-</u>	6,5		250
Sulfat	mg/l	30	120	-	130	<u>-</u>	120		100	<u>-</u>	130		240
Nitrat	mg/l	1,8	<0,10	-	<0,10	<u>-</u>	<0,10		<0,10	<u>-</u>	0,33		270
Nitrit	mg/l	<0,050	<0,050	-	<0,10	<u>-</u>	<0,050	-	<0,050	-	<0,050		
Ammonium	mg/l	1,3	1,1	-	1,0	<u>-</u>	1,1	-	1,3	<u>-</u>	0,050		
Sulfid	mg/l	<0,020	<0,010	-	<0,010	<u>-</u>	<0,010	-	<0,010	<u>-</u>	<0,010		
Cyanid (ges.)		<0,020 <5	<0,010	-	<0,010 <5	<u>-</u>	<0,010 <5	-	<0,010	<u>-</u>	<0,010 <5	50	50
Oyaniu (ges.)	μg/l	<.5	<.5	_	<.0	_	<.o	_	<:0	· -	_ <u>~</u> 0	1 30	1 30

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-7: (Forts.)

		780	130	780136-1	780137-1	780	166	780	0167	78	0168	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit												
Arsen	μg/l	<10	-	<10	<10	<10	-	<10	-	<10	-	10	10
Blei	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	25	7
Cadmium	<u>μ</u> g/l	<1	-	<0,5	<0,5	<5,0	-	<0,5	-	<0,5	-	5	0,5
Chrom (ges.)	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	50	50
Kupfer	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	50	14
Nickel	<u>μ</u> g/l	<5	_	<5	<5	<5	-	<5	_	<5	-	50	14
Quecksilber	<u>μ</u> g/l	<0,2	_	<0,2	<0,2	<0,2	-	<0,2	_	<0,2	-	1	0,2
Zink	μ g /l	53	_	<10	<10	<10	-	<10	_	<10	_	500	58
KW-Index	μg/l	<100	<100	<100	<100	<100	<100	<100	<100	280	<100	200	100
LAK	<u>μ</u> g/l	-	<50	-	-	-	<50	-	<50	-	98		
Phenol-Index 1)	<u>μ</u> g/l	<5	-	<5	<5	<5	-	<5	-	<5	-	20	8
Summe nachgewiesener BTEX	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	0,55	n.b.	n.b.	61	32	20	20
Benzol	<u>μ</u> g/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	5,2	6,0	1	1
Toluol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	0,55	<0,50	<0,50	1,2	<0,50	-	
Ethylbenzol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	15	11		
m-,p-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	40	15		
o-Xylol	μ g /l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener	μ 9	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00	10,00		
LHKW	μg/l	n.b.	n.b.	1,1	0,87	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	1,1	0,87	<0,50	<0,50	<0,50	<0,50	0,85	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	n.b.	n.b.	-	n.b.	-	0,95	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	-	n.b.	n.b.	n.b.	-	n.b.	-	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	-	<0,10	<0,10	<0,10	-	<0,10	-	0,95	-	2	1
Benzo(a)pyren	μg/l	<0,050	-	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	-		0,01
TOC	mg/l	2,9	-	1,3	1,1	3,0	-	<1,0	-	2,8	-		
Chlorid	mg/l	14	-	33	22	22	-	29	-	6,4	-		250
Sulfat	mg/l	120	-	94	95	78	-	170	-	21	-		240
Nitrat	mg/l	<0,10	-	0,28	<0,10	<0,10	-	<0,10	-	<0,10	-		
Nitrit	mg/l	<0,050	-	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	-		
Ammonium	mg/l	1,1	-	0,26	0,32	0,11	-	0,40	-	0,39	-		
Sulfid	mg/l	<0,010	-	<0,010	<0,010	<0,010	-	<0,010	-	<0,010	-		
	<u></u> μg/l	<5	+	<5	<5	<5	 	<5	+	<5	1	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Tab. A 2-7: (Forts.)

		780)169	780170	780171	780	172	780)173	780)174	Bewertung	sgrundlagen
		2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit												
Arsen	μg/l	<10	-	<10	<10	<10	-	<10	-	<10	-	10	10
Blei	μg/l	<5	=	<5	<5	<5	-	<5	-	<5	-	25	7
Cadmium	μg/l	<0,5	=	<0,5	<0,5	<0,5	-	<0,5	-	<0,5	-	5	0,5
Chrom (ges.)	μg/l	<5	-	<5	<5	<5	-	<5	-	<5	-	50	50
Kupfer	μg/l	<5	-	<5	<5	<5	-	<5	-	<5	-	50	14
Nickel	μg/l	<5	=	8,2	<5	<5	-	<5	-	<5	-	50	14
Quecksilber	μg/l	<0,2	_	<0,2	<0,2	<0,2	_	<0,2	-	<0,2	_	1	0,2
Zink	μg/l	<10	-	<10	<10	<10	-	<10	-	<10	-	500	58
KW-Index	μg/l	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	200	100
LAK	μg/l	-	<50	-	-	-	<50	-	<50	-	<50		
Phenol-Index 1)	μg/l	<5	-	<5	<5	<5	-	<5	-	<5	-	20	8
Summe nachgewiesener	1 3									-		-	
BTEX	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,60	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	0,60		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener													
LHKW	μg/l	n.b.	8,9	1,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	8,9	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	0,89	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<0,50	<0,50	0,53	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK (n. EPA)	μg/l	n.b.	-	n.b.	n.b.	n.b.	-	n.b.	-	n.b.	-		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	-	n.b.	n.b.	n.b.	-	n.b.	-	n.b.	-	0,2	0,2
Naphthalin	μg/l	<0,10	-	<0,10	<0,10	<0,10	-	<0,10	-	<0,10	-	2	1
Benzo(a)pyren	μg/l	<0,050	-	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	-		0,01
TOC	mg/l	5,1	-	2,7	3,2	4,6	-	4,1	-	2,2	-		
Chlorid	mg/l	7,4	-	11	35	10	-	19	-	17	-		250
Sulfat	mg/l	54	-	95	130	140	-	130	-	170	-		240
Nitrat	mg/l	<0,10	-	14	<0,10	0,10	-	<0,10	-	<0,10	-		
Nitrit	mg/l	<0,050	-	<0,050	<0,050	<0,050	-	<0,050	-	<0,050	-		
Ammonium	mg/l	0,90	-	0,080	1,6	0,64	-	1,0	-	0,80	-		
Sulfid	mg/l	<0,010	-	<0,010	<0,010	<0,010	-	<0,010	-	<0,010	-		
Cyanid (ges.)	μg/l	<5	_	<5	<5	<5	_	<5	_	<5	_	50	50

¹⁾ Der Prüfwert gilt für Phenole. In den Phenol-Index gehen neben Phenolen auch phenolartige Moleküle aus Huminverbindungen ein

Anlage A 3

Beprobungsprotokolle und Prüfberichte SEWA Laborbetriebsgesellschaft m.b.H., Essen

(Grundwasserkampagnen 21./22.08.2012, 20./21.03.2013, 02./05.08.2013, 13./14.02.2014, 08./09.09.2014, 24./25.11.2014)

Berichts-Nr.	Berichts-Datum	Datum der Grundwasserbeprobung
AU 42298	06.09.2012	21./22.08.2012
AU 44290	11.04.2013	20./21.03.2013
AU 45590	23.08.2013	02./05.08.2013
AU 47380	06.03.2014	13./14.02.2014
AU 49353	26.09.2014	08./09.09.2014
AU 50150	01.12.2014	24./25.11.2014

Probenahmeprotokoll

Gemeinde Mönchengladbach

Projekt Reme-Gelände

Analysenregister-Nr.	1	2	3	4
Datum	21.08.2012	21.08.2012	21.08.2012	21.08.2012
Uhrzeit	8:30	9:15	12:45	12:15
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780057	780101	780100	780078
Pegeldurchmesser	125	125	125	50
Wasserstand vorher ROK [m]	3,46	3,46	3,48	3,12
Wasserstand nachher ROK [m]	4,12	3,62	3,55	3,74
Sohle ROK [m]	11,36	14,72	13,90	11,19
Entnahmetiefe [m]	6,00	5,50	5,50	5,20
Pumpleistung [l/min]	10	20	20	10
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	300	405	400	100
Färbung	ohne	ohne	ohne	schwach grau
Trübung	ohne	ohne	ohne	stark
Bodensatz	ohne	ohne	ohne	ohne
Geruch	ohne	schwach aromatisch	schwach aromatisch	stark muffig
pH-Wert	6,97	6,75	6,79	6,67
Leitfähigkeit [μS/cm]	588	702	597	515
Sauerstoffgehalt [mg/l]	1,3	1,0	1,1	0,4
Redox-Spannung [mV]	103	134	113	78
Temperatur [°C]	14,8	12,8	13,0	13,2
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	5	6	7	8
Datum	21.08.2012	21.08.2012	21.08.2012	21.08.2012
Uhrzeit	11:45	13:45	14:15	15:00
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780079	780058	780130	780056
Pegeldurchmesser	50	125	125	125
Wasserstand vorher ROK [m]	3,10	3,71	3,06	3,71
Wasserstand nachher ROK [m]	3,91	3,89	3,17	4,25
Sohle ROK [m]	15,29	11,29	12,35	10,60
Entnahmetiefe [m]	5,20	6,00	5,10	5,80
Pumpleistung [l/min]	10	10	10	10
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	150	280	300	200
Färbung	braun	ohne	ohne	schwach gelb
Trübung	stark	ohne	ohne	ohne
Bodensatz	gering	ohne	ohne	ohne
Geruch	stark muffig	ohne	schwach muffig	schwach aromatisch
pH-Wert	7,10	7,10	6,87	7,30
Leitfähigkeit [μS/cm]	575	441	556	559
Sauerstoffgehalt [mg/l]	0,8	0,4	0,7	0,3
Redox-Spannung [mV]	118	122	97	204
Temperatur [°C]	14,9	15,3	12,8	12,7
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	9	10	11	12
Datum	21.08.2012	22.08.2012	22.08.2012	22.08.2012
Uhrzeit	11:00	8:15	9:30	10:30
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780054	780055	780018	780136,1
Pegeldurchmesser	125	125	125	125
Wasserstand vorher ROK [m]	3,25	2,48	3,98 Oberkante Balken	3,21
Wasserstand nachher ROK [m]	3,54	2,71	3,91Oberkante Balken	5,41
Sohle ROK [m]	11,55	12,89	15,63	5,85
Entnahmetiefe [m]	5,50	4,50	6,00	5,50
Pumpleistung [l/min]	20	20	42	10
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	450	385	1500	110
Färbung	ohne	gelb	ohne	gelb
Trübung	ohne	stark	ohne	stark
Bodensatz	ohne	gering	mittel	mittel
Geruch	schwach aromatisch	ohne	ohne	ohne
pH-Wert	7,20	7,00	6,33	7,05
Leitfähigkeit [μS/cm]	537	477	357	566
Sauerstoffgehalt [mg/l]	0,4	0,9	1,3	2,4
Redox-Spannung [mV]	95	164	155	137
Temperatur [°C]	12,5	13,8	11,8	13,5
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	13	14	15	16
Datum	22.08.2012	22.08.2012	22.08.2012	21.08.2012
Uhrzeit	11:00	11:45	12:30	
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780137,1	780110	780061	780101
Pegeldurchmesser	125	125	50	125
Wasserstand vorher ROK [m]	3,23	3,09	3,25	
Wasserstand nachher ROK [m]	4,17	3,17		
Sohle ROK [m]	7,08	11,00	5,17	
Entnahmetiefe [m]	5,50	5,10		
Pumpleistung [l/min]	15	20		
Art der Probenahme	Pumpprobe	Pumpprobe	schöpfprobe	Schöpfprobe
Probenahmegerät	MP 1	MP 1	VA- Schöpfer	VA-Schöpfer
Abgepumpte Menge [L]	150	450		
Färbung	gelb	schwach gelb	schwach grau	gelb
Trübung	stark	mittel	mittel	mitrel
Bodensatz	mittel	gering	gering	mittel
Geruch	ohne	schwach aromatisch	schwach	ohne
pH-Wert	6,29	6,59	7,04	
Leitfähigkeit [μS/cm]	442	469	525	
Sauerstoffgehalt [mg/l]	1,0	0,7	1,9	
Redox-Spannung [mV]	161	173	160	
Temperatur [°C]	13,7	12,4	14,1	
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	17	18	19	20
Datum	21.08.2012	21.08.2012	21.08.2012	21.08.2012
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780100	780078	78079	780058
Pegeldurchmesser	125	50	50	125
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	VA-Schöpfer	VA-Schöpfer	VA-Schöpfer	VA-Schöpfer
Abgepumpte Menge [L]				
Färbung	schwach grau	schwach grau	schwach grau	schwach grau
Trübung	mittel	stark	stark	mittel
Bodensatz	mittel	mittel	mittel	mittel
Geruch	muffig	faulig	faulig	ohne
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	21	22
Datum	21.08.2012	21.08.2012
Uhrzeit		
Pobennehmer	D. Gusek	D. Gusek
Pegel-Nr.	780130	780056
Pegeldurchmesser	125	125
Wasserstand vorher ROK [m]		
Wasserstand nachher ROK [m]		
Sohle ROK [m]		
Entnahmetiefe [m]		
Pumpleistung [l/min]		
Art der Probenahme	Schöpfprobe	Schöpfprobe
Probenahmegerät	VA-Schöpfer	VA-Schöpfer
Abgepumpte Menge [L]		
Färbung	ohne	schwach gelb
Trübung	ohne	sehr schwach
Bodensatz	ohne	mittel
Geruch	schwach faulig	ohne
pH-Wert		
Leitfähigkeit [μS/cm]		
Sauerstoffgehalt [mg/l]		
Redox-Spannung [mV]		
Temperatur [°C]		
Probenübergabe Labor		
Bemerkung		

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Kruppstr. 86 45145 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU42298
Berichtsdatum: 06.09.2012

Projekt: 014.060.019 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 21.08.2012

Probeneingang: 21.08.2012

Untersuchungszeitraum: 21.08.2012 — 06.09.2012

Probenahme durch: SEWA GmbH

Untersuchungsgegenstand: 22 Wasserproben

Andreas Görner

Suchreas ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
42298 - 1	GWM 780057			
42298 - 2	GWM 780101			
42298 - 3	GWM 780100			
42298 - 4	GWM 780078			
	42298 - 1	42298 - 2	42298 - 3	4229

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0.0050	<0.0050	<0.0050
TOC	mg/l	3,9	2,9	3,1	3,0
Chlorid	mg/l	36	19	19	24
Sulfat	mg/l	120	190	110	110
Nitrat	mg/l	2,6	<0,10	<0,10	<0,10
Nitrit	mg/l	0,077	<0,050	<0,050	<0,050
Ammonium	mg/l	0,50	0,85	0.90	0,81
Sulfid	mg/l	<0.010	<0.010	<0.010	<0.010
Cyanid (ges.)	mg/l	<0.010	<0,010	<0.010	<0.010
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
	3	., .	-, -	-, -	-, -
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft m.b.
Labornummer	Ihre Pro	benbezeichnung		Probenentnahi	me
42298 - 1	GV	GWM 780057			
42298 - 2	GV	VM 780101			
42298 - 3	G\	VM 780100			
42298 - 4	G\	VM 780078			
			12200 2	42200 2	42200 4
		42298 - 1	42298 - 2	42298 - 3	42298 - 4
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
	1.5				
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gco
Labornummer	Ihre Probenbezeichnung			Probenentnal	ıme
42298 - 1	GV	VM 780057			
42298 - 2	GV	VM 780101			
42298 - 3	GV	VM 780100			
42298 - 4	GV	VM 780078			
		42298 - 1	42298 - 2	42298 - 3	4229
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	0,021	<0,0050	0,011	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,011	<0,010	0,041	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
42298 - 5	GWM 780079	
42298 - 6	GWM 780058	
42298 - 7	GWM 780130	
42298 - 8	GWM 780056	
	42298 - 5 42298 -	- 6 42298 - 7 4229

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0.0050	<0.0050
TOC	mg/l	6,9	2,6	4,5	15
Chlorid	mg/l	25	19	25	14
Sulfat	mg/l	120	81	120	53
Nitrat	mg/l	0,12	<0,10	<0,10	0,37
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,94	0,85	0,89	1,6
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0.010	<0.010	<0.010	<0.010
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	0,62	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	0,75	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,75	0,62	n. berechenbar	n. berechenbar

					gesellschaft m.b.
Labornummer	Ihre I	Probenbezeichnung		Probenentnahi	me
42298 - 5		GWM 780079			
42298 - 6		GWM 780058			
42298 - 7		GWM 780130			
42298 - 8		GWM 780056			
		42298 - 5	42298 - 6	42298 - 7	42298 - 8
		42290 - 3	42298 - 0	42290 - 1	42290 - 0
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EF	PA μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
Summe PAK n.Trinkw	V μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gese
Labornummer	Ihre Prol	penbezeichnung		Probenentna	ıme
42298 - 5	GV	VM 780079			
42298 - 6	GWM 780058				
42298 - 7	GWM 780130				
42298 - 8	GV	VM 780056			
		42298 - 5	42298 - 6	42298 - 7	42298
••					
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	0,0055	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,015	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung	Ihre Probenbezeichnung		
42298 - 9	GWM 780054	GWM 780054		
42298 - 10	GWM 780055	GWM 780055		
42298 - 11	GWM 780018	GWM 780018		
42298 - 12	GWM 780136-1			
	42298 - 9	42298 - 10	42298 - 11	42298

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0.0050	<0,0050	<0.0050
TOC	mg/l	6,7	13	2,4	2,9
Chlorid	mg/l	9,1	31	15	34
Sulfat	mg/l	33	110	33	120
Nitrat	mg/l	2,6	<0,10	<0,10	1,4
Nitrit	mg/l	0,16	0,24	<0,050	<0,050
Ammonium	mg/l	1,1	0,099	<0,030	0,061
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,010	<0,010	<0,010	<0,010
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	0,52	0,72	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,52	0,72	n. berechenbar	n. berechenbar

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
42298 - 9	GV	VM 780054			
42298 - 10	G\	VM 780055			
42298 - 11	G\	VM 780018			
42298 - 12		M 780136-1			
42270 - 12	311				
		42298 - 9	42298 - 10	42298 - 11	42298 - 12
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Γoluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,3,5-Trimethylbenzol	μg/l	<5,0	<5,0 <5,0	<5,0	<5,0
,2,4-Trimethylbenzol	μg/l	<5,0	<5,0 <5,0	<5,0	<5,0
,2,3-Trimethylbenzol	μg/l	<5,0	<5,0 <5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0 <5,0	<5,0	<5,0
nden	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0	<5,0
,2,3,4-Tetralin	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0	<5,0 <5,0
2-Methylnaphthalin	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0	<5,0
-Methylnaphthalin	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0	<5,0 <5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berecher
Julillie BTEX	μ9/1	n. berechenbar	n. berechenbar	n. berechenbar	II. Delectici
PAK nach US EPA					
Naphthalin	μg/l	0,59	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	0,11	<0,10	<0,10	<0,10
Acenaphthen	μg/l	0,26	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	0,060	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	1,0	n. berechenbar	n. berechenbar	n. berecher
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berecher

					gco
Labornummer	Ihre Prob	penbezeichnung		Probenentna	nme
42298 - 9	GV	VM 780054			
42298 - 10	GV	VM 780055			
42298 - 11	GWM 780018				
42298 - 12	GW	M 780136-1			
		42298 - 9	42298 - 10	42298 - 11	42298
Metalle					
Arsen	mg/l	<0.010	<0.010	<0.010	
Blei	mg/l	<0,010	<0,010	<0,010	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	0,0062	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,013	<0,010	0,065	

Labornummer	Ihre Probenbezeichnung	Probenentnahme	
42298 - 13	GWM 780137-1		
42298 - 14	GWM 780110-1		
42298 - 15	GWM 780061		
42298 - 16	GWM 780101 SP		
	42298 - 13 42298 - 14	42298 - 15 4229	8 -

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	0,032	
TOC	mg/l	5,4	24	33	
Chlorid	mg/l	26	4,9	26	
Sulfat	mg/l	85	85	99	
Nitrat	mg/l	0,52	0,31	1,2	
Nitrit	mg/l	0,11	<0,050	0,55	
Ammonium	mg/l	0,34	0,093	1,5	
Sulfid	mg/l	<0,010	<0,010	<0,010	
Cyanid (ges.)	mg/l	<0,010	<0,010	<0,010	
LAK	μg/l				<50
KW-Index	mg/l	<0,10	<0,10	<0,10	
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					Laborbetriebs- gesellschaft m.
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
42298 - 13	GW	VM 780137-1			
42298 - 14	GW	VM 780110-1			
42298 - 15	G'	WM 780061			
42298 - 16		M 780101 SP			
42290 - 10	GW				
		42298 - 13	42298 - 14	42298 - 15	42298 - 16
AKW					
Benzol	μg/l	<0,50	<0,50	1,0	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
Propylbenzol	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
I,2,4-Trimethylbenzol	μg/l //	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l //	<5,0	<5,0	<5,0	<5,0
ndan	μg/l //	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	1,0	n. berechenba
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	
Acenaphthylen	μg/l	<0,10	<0,10	0,41	
Acenaphthen	μg/l	<0,10	<0,10	2,0	
Fluoren	μg/l	<0,10	<0,10	0,26	
Phenanthren	μg/l	<0,050	<0,050	0,056	
Anthracen	μg/l	<0,050	<0,050	<0,050	
Fluoranthen	μg/l	<0,050	<0,050	0,050	
Pyren	μg/l	<0,050	<0,050	<0,050	
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	
Chrysen	μg/l	<0,050	<0,050	<0,050	
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	
Indeno(123-cd)pyren	μg/l	<0,050	<0.050	<0,050	
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	2,8	
O DAY THE	μ9/1	ii. bereenenbal	ii. bereenenbar	2,0	

Summe PAK n.TrinkwV

n. berechenbar

μg/l

n. berechenbar

n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
42298 - 13	GWM 780137-1	
42298 - 14	GWM 780110-1	
42298 - 15	GWM 780061	
42298 - 16	GWM 780101 SP	

		42298 - 13	42298 - 14	42298 - 15	42298 - 16
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	0,029	
Cadmium	mg/l	<0,00050	0,00097	0,00063	
Chrom	mg/l	<0,0050	<0,0050	0,0077	
Kupfer	mg/l	<0,0050	<0,0050	0,012	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,025	0,050	0,11	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
42298 - 17	GWM 780100 SP	
42298 - 18	GWM 780078 SP	
42298 - 19	GWM 780079 SP	
42298 - 20	GWM 780058 SP	
	42298 - 17 42298 - 18	42298 - 19 4229

• Untersuchungen im Wasser

LAK	μg/l	<50	<50	<50	<50
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	14
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	560
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	570
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
42298 - 21	GWM 780130 SP	
42298 - 22	GWM 780056 SP	

Untersuchungen im Wasser

LAK	μg/l	<50	<50
LHKW+VC			
1,1-Dichlorethan	μg/l	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50
Summe LHKW		In a second a section of	
Sullille LITAW	μg/l	n. berechenbar	n. berechenbar
	μg/i	n. berechenbar	n. berechenbar
AKW			
AKW Benzol	μg/l	<0,50	<0,50
AKW Benzol Toluol	ha\l	<0,50 <0,50	<0,50 <0,50
AKW Benzol Toluol Ethylbenzol	hā\l hā\l hā\l	<0,50 <0,50 <0,50	<0,50 <0,50 <0,50
AKW Benzol Toluol Ethylbenzol m/p-Xylol	µg/I µg/I µg/I	<0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol	hâ\l hâ\l hâ\l	<0,50 <0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50 <0,50
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol	hā\l hā\l hā\l hā\l	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol	ha\l ha\l ha\l ha\l ha\l ha\l	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	<0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	<0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/l	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin 2-Methylnaphthalin	нд/I нд/I нд/I нд/I нд/I нд/I нд/I нд/I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0

Untersuchungsmethoden

Untersuchungen im Wasser

DIN 38406 E5-1 Ammonium DIN EN ISO 10304-1 Chlorid Cyanid (ges.) DIN 38405 D7 KW-Index **DIN EN ISO 9377-2** LAK analog DIN 38407 F9 DIN EN ISO 10304-1 Nitrat DIN EN ISO 10304-1 Nitrit Phenolindex DIN 38409 H37 Sulfat DIN EN ISO 10304-1 Sulfid DIN 38405 D26 TOC **DIN EN 1484**

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

PAK nach US EPA E DIN 38407 F39

DIN EN ISO 11885 Arsen Blei DIN EN ISO 11885 Cadmium DIN EN ISO 11885 **DIN EN ISO 11885** Chrom Kupfer DIN EN ISO 11885 Nickel DIN EN ISO 11885 Quecksilber **DIN EN 1483** Zink **DIN EN ISO 11885**

Probenahmeprotokoll

Gemeinde Mönchengladbach

Projekt Reme-Gelände

Analysenregister-Nr.	1	2	3	4
Datum	20.03.2013	20.03.2013	20.03.2013	20.03.2013
Uhrzeit	07:45	08:30	09:15	10:15
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780057	780055	780018	780136,1
Pegeldurchmesser	125	125		125
Wasserstand vorher ROK [m]	3,57	2,02	3,41Oberkante Träger	3,02
Wasserstand nachher ROK [m]	7,17	2,53	3,48Oberkante Träger	5,46
Sohle ROK [m]	11,36	12,90	15,63	5,85
Entnahmetiefe [m]	6,00	4,00	5,50	5,60
Pumpleistung [l/min]	10	20	42	10
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	300	400	1500	110
Färbung	ohne	schwach Gelb	ohne	gelb
Trübung	schwach	schwach	ohne	mittel
Bodensatz	ohne	ohne	ohne	mittel
Geruch	ohne	schwach H ² S	ohne	ohne
pH-Wert	7,02	7,14	7,03	7,06
Leitfähigkeit [μS/cm]	443	399	292	427
Sauerstoffgehalt [mg/l]	1,2	0,7	1,0	2,0
Redox-Spannung [mV]	195	203	193	207
Temperatur [°C]	13,8	13,8	11,4	12,9
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	5	6	7	8
Datum	20.03.2013	20.03.2013	20.03.2013	20.03.2013
Uhrzeit	10:40	11:00	11:30	12:15
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780137,1	780164	780058	780130
Pegeldurchmesser	125	125	125	125
Wasserstand vorher ROK [m]	2,94	3,56	3,33	2,69
Wasserstand nachher ROK [m]	4,28	3,61	3,40	2,78
Sohle ROK [m]	7,08	12,50	11,29	12,35
Entnahmetiefe [m]	5,00	5,60	5,50	4,70
Pumpleistung [l/min]	15	20	10	10
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	150	350	280	300
Färbung	schwach gelb	ohne	ohne	ohne
Trübung	mittel	schwach	ohne	ohne
Bodensatz	ohne	ohne	ohjne	ohne
Geruch	schwach Aromatisch	schwach Aromatisch	ohne	Aromatisch
pH-Wert	7,01	7,01	6,98	7,25
Leitfähigkeit [µS/cm]	377	404	347	452
Sauerstoffgehalt [mg/l]	1,1	2,3	0,3	0,5
Redox-Spannung [mV]	201	171	217	173
Temperatur [°C]	13,6	13,4	15,1	12,7
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	9	10	11	12
Datum	20.03.2013	21.03.2013	21.03.2013	21.03.2013
Uhrzeit	13:00	07:45	08:15	10:00
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780056	780078	780079	780100
Pegeldurchmesser	125	50	50	125
Wasserstand vorher ROK [m]	3,39	2,71	2,74	3,12
Wasserstand nachher ROK [m]	3,91	3,36	3,51	3,20
Sohle ROK [m]	10,70	11,14	15,29	13,90
Entnahmetiefe [m]	5,50	5,0	5,00	5,50
Pumpleistung [l/min]	10	10	10	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	20	100	150	400
Färbung	schwach Gelb	schwach grau	ohne	schwach Gelb
Trübung	ohne	schwach	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	Aromatisch	muffig	muffig	Aromatisch
pH-Wert	7,31	6,87	6,91	6,85
Leitfähigkeit [μS/cm]	489	556	518	429
Sauerstoffgehalt [mg/l]	0,3	0,4	0,9	1,0
Redox-Spannung [mV]	210	150	129	159
Temperatur [°C]	12,5	11,8	11,4	11,5
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	13	14	15	16
Datum	21.03.2013	21.03.2013	21.03.2013	21.03.2013
Uhrzeit	10:30	11:15	12:00	12:45
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780101	780054	780061	780110,1
Pegeldurchmesser	125	125	125	125
Wasserstand vorher ROK [m]	3,09	2,82	2,86	2,73
Wasserstand nachher ROK [m]	3,27	3,07	3,21	2,89
Sohle ROK [m]	14,72	11,55	5,15	11,00
Entnahmetiefe [m]	5,10	5,00	5,00	5,00
Pumpleistung [l/min]	20	20	6	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	Eijkelkamp	MP 1
Abgepumpte Menge [L]	400	400	100	400
Färbung	schwach Gelb	ohne	ohne	ohne
Trübung	ohne	ohne	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	Aromatisch	schwach Aromatisch	schwach Aromatisch	schwach muffig
pH-Wert	6,78	6,83	6,91	6,44
Leitfähigkeit [μS/cm]	427	545	480	250
Sauerstoffgehalt [mg/l]	0,8	0,6	0,9	0,8
Redox-Spannung [mV]	163	127	197	179
Temperatur [°C]	11,2	9,8	8,8	11,3
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	17	18	19	20
Datum	21.03.2013	21.03.2013	21.03.2013	21.03.2013
Uhrzeit	08:45	09:30		
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	Abwasserkanal 307	Abwasserkanal 114	780100	780078
Pegeldurchmesser			125	50
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	PE-Schöpfer	PE-Schöpfer	VA-Schöpfer	VA-Schöpfer
Abgepumpte Menge [L]				
Färbung	Grau	schwach grau	rostrot	schwach grau
Trübung	stark	stark	stark	mittel
Bodensatz	viel	gering	viel	mittel
Geruch	stark Faulig	faulig	muffig	faulig
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	21	22	23	24
Datum	21.03.2013	21.03.2013	21.03.2013	21.03.2013
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780079	780101	780058	780130
Pegeldurchmesser	50	125	125	125
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	VA-Schöpfer	VA-Schöpfer	VA-Schöpfer	VA-Schöpfer
Abgepumpte Menge [L]				
Färbung	rostrot	rostrot	schwach grau	rostrot
Trübung	stark	stark	mittel	stark
Bodensatz	mittel	viel	ohne	viel
Geruch	schwach Faulig	schwach Aromatisch	ohne	schwach faulig
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Projekt Reme-Gelände

Analysenregister-Nr.	25
Datum	21.03.2013
Uhrzeit	
Pobennehmer	D. Gusek
Pegel-Nr.	780056
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [m]	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA-Schöpfer
Abgepumpte Menge [L]	
Färbung	schwach Grau
Trübung	schwach
Bodensatz	ohne
Geruch	muffig
pH-Wert	
Leitfähigkeit [μS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU44290
Berichtsdatum: 11.04.2013

Projekt: 014.060.019 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 19.03.2013

Probeneingang: 20.03.2013

Untersuchungszeitraum: 20.03.2013 — 11.04.2013

Probenahme durch: SEWA GmbH

Untersuchungsgegenstand: 25 Wasserproben

Andreas Görner

Sudreas ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentnahme
44290 - 1	780057		
44290 - 2	780055		
44290 - 3	780018		
44290 - 4	780136,1		
	44290 - 1 4	4290 - 2	44290 - 3 442

• Untersuchungen im Wasser

Phenolindex		-0.0050	-0.00E0	-0.0050	-0.00E0
	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	2,7	<1,0	<1,0	<1,0
Chlorid	mg/l	26	30	13	35
Sulfat	mg/l	100	100	35	120
Nitrat	mg/l	3,8	<0,10	0,13	<0,10
Nitrit	mg/l	0,14	<0,050	<0,050	<0,050
Ammonium	mg/l	0,18	0,20	<0,030	0,23
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,010	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	2,4	1,1	0,82	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	2,4	1,1	0,82	n. berechenbar

					gesellschaf
Labornummer	Ihre Pro	benbezeichnung		Probenentnahr	me
44290 - 1		780057			
44290 - 2		780055			
44290 - 3		780018			
44290 - 4		780136,1			
TT270 - T					
		44290 - 1	44290 - 2	44290 - 3	44290 - 4
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Foluol	μg/l	<0,50	<0,50	<0,50	0,58
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
I-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	0,58
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0.050	<0,050	<0,10
Anthracen	μg/l	<0,050	<0.050	<0.050	<0,05
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(ghi)perylen	μg/l	<0,050	<0.050	<0,050	<0,05
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
	MM				20.00110

					gese
Labornummer	Ihre Prob	penbezeichnung		Probenentna	nme
44290 - 1		780057			
44290 - 2		780055			
44290 - 3		780018			
44290 - 4	,	780136,1			
		44290 - 1	44290 - 2	44290 - 3	4429
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
44290 - 5	780137,1	
44290 - 6	780164	
44290 - 7	780058	
44290 - 8	780130	
	44290 - 5 44290	0 - 6 44290 - 7 4429

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	1,1	2,9	2,5	2,8
Chlorid	mg/l	24	5,3	19	23
Sulfat	mg/l	89	61	76	120
Nitrat	mg/l	<0,10	0,25	<0,10	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,43	0,39	0,83	1,1
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	0,67	0,77	0,76
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	0,67	0,77	0,76

					gesellschaft m
Labornummer	Ihre Pro	benbezeichnung		Probenentnahn	ne
44290 - 5		780137,1			
44290 - 6		780164			
44290 - 7		780058			
44290 - 8		780130			
1.255 0			11000		44200
		44290 - 5	44290 - 6	44290 - 7	44290 - 8
.KW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
oluol	μg/l	<0,50	1,0	1,4	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,3,5-Trimethylbenzol	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
,2,4-Trimethylbenzol	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
,2,3-Trimethylbenzol		<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
ndan	μg/l				<5,0 <5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0 <5,0
	μg/l	<5,0	<5,0	<5,0	
,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	1,0	1,4	n. berechent
AK nach US EPA					
laphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
cenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
cenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
luoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Inthracen	μg/l	<0,050	<0,050	<0,050	<0,050
luoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
enzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
1461101 120-641011611	μg/ι	\0,030	\0,030	~0,050	<0,030
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen

					gco
Labornummer	Ihre Prob	penbezeichnung		Probenentnal	ıme
44290 - 5	7	780137,1			
44290 - 6		780164			
44290 - 7		780058			
44290 - 8		780130			
		44290 - 5	44290 - 6	44290 - 7	4429
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	0,11	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
44290 - 9	780056			
44290 - 10	780078			
44290 - 11	780079			
44290 - 12	780100			
	44290 - 9	44290 - 10	44290 - 11	44290

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	15	3,2	2,9	3,3
Chlorid	mg/l	10	20	23	15
Sulfat	mg/l	56	110	110	95
Nitrat	mg/l	<0,10	<0,10	<0,10	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,6	1,1	0,96	1,1
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	0,21	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
44290 - 9		780056			
44290 - 10		780078			
44290 - 11		780079			
44290 - 12		780100			
44270 - 12					
		44290 - 9	44290 - 10	44290 - 11	44290 - 12
AKW					
Benzol	ug/l	<0,50	<0,50	<0,50	<0,50
Foluol	μg/l μg/l	0,56	0,85	<0,50 <0,50	<0,50
Ethylbenzol		<0,50	<0,50	<0,50	<0,50
	μg/l		<0,50 <0,50		<0,50
n/p-Xylol	μg/l	<0,50	•	<0,50	•
o-Xylol Styrol	μg/l	<0,50	<0,50 <5,0	<0,50	<0,50 <5,0
	μg/l	<5,0	•	<5,0	
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l "	<5,0	<5,0	<5,0	<5,0
,2,3,4-Tetralin	μg/l "	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l "	<5,0	<5,0	<5,0	<5,0
-Methylnaphthalin	μg/l 	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	0,56	0,85	n. berechenbar	n. berecher
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
luoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berecher
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berecher

					gcs
Labornummer	Ihre Prob	penbezeichnung		Probenentna	hme
44290 - 9		780056			
44290 - 10		780078			
44290 - 11		780079			
44290 - 12		780100			
		44290 - 9	44290 - 10	44290 - 11	4429
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
44290 - 13	780101			
44290 - 14	780054			
44290 - 15	780061			
44290 - 16	780110,1			
	44290 - 13	44290 - 14	44290 - 15	4429

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	3,9	4,4	9,0	4,6
Chlorid	mg/l	12	8,1	12	4,7
Sulfat	mg/l	59	60	14	75
Nitrat	mg/l	0,71	8,4	<0,10	1,5
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,3	1,1	2,0	0,61
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	0,0074	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	0,16	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnahr	ne
44290 - 13		780101			
44290 - 14		780054			
44290 - 15		780061			
44290 - 16		780110,1			
11270 10			44200 14	44200 15	44200 16
		44290 - 13	44290 - 14	44290 - 15	44290 - 16
IKW					
Benzol	μg/l	<0,50	<0,50	7,8	<0,50
- oluol	μg/l	0,56	0,55	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	<0,50	<0,50	0,62	<0,50
-Xylol	μg/l	<0,50	<0,50	3,6	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	0,56	0,55	12	n. berecher
PAK nach US EPA					
Naphthalin	μg/l	<0,10	0,15	0,52	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	0,37	<0,10
Acenaphthen	μg/l	<0,10	0,23	4,2	<0,10
Fluoren	μg/l	<0,10	<0,10	1,0	<0,10
Phenanthren	μg/l	<0,050	<0,050	0,66	<0,050
Anthracen	μg/l	<0,050	<0,050	0,088	<0,050
Fluoranthen	μg/l	<0,050	<0,050	1,3	<0,050
Pyren	μg/l	<0,050	<0,050	0,87	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	0,46	<0,050
Chrysen	μg/l	<0,050	<0,050	0,34	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	0,15	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	0,076	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	0,081	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
			•		
Summe PAK n. US EPA	μg/l	n. berechenbar	0,38	10	n. berecher

					gcoc
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
44290 - 13		780101			
44290 - 14		780054			
44290 - 15		780061			
44290 - 16		780110,1			
		44290 - 13	44290 - 14	44290 - 15	44290
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	0,013	<0,010	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
44290 - 17	Abwasserkanal 307	
44290 - 18	Abwasserkanal 114	
44290 - 19	780100	
44290 - 20	780078	
	44290 - 17 44290	- 18 44290 - 19 44290

Untersuchungen im Wasser

LAK	μg/l	<50	<50	<50	<50
KW-Index	mg/l	<0,10	<0,10		
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	0,84
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	0,84
AKW					
Benzol	μg/l	0,52	<0,50	<0,50	<0,50
Toluol	μg/l	16	1,7	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	17	1,7	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
44290 - 17	Abwasserkanal 307	
44290 - 18	Abwasserkanal 114	
44290 - 19	780100	
44290 - 20	780078	

44290 - 17 44290 - 18 44290 - 19 44290 - 20

Metalle

Bor	mg/l	0,16	0,094
Kalium	ma/l	19	11

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
44290 - 21	780079			
44290 - 22	780101			
44290 - 23	780058			
44290 - 24	780130			
	44290 - 21	44290 - 22	44290 - 23	4429

Untersuchungen im Wasser

LAK	μg/l	<50	<50	<50	<50
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	1,3	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	1,3	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
44290 - 25	780056	

44290 - 25

Untersuchungen im Wasser

LAK	μg/l	<50
LHKW+VC		
1,1-Dichlorethan	μg/l	<5,0
1,1-Dichlorethen	μg/l	<5,0
1,2-Dichlorethan	μg/l	<5,0
Dichlormethan	μg/l	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0
Trichlormethan	μg/l	<0,50
1,1,1-Trichlorethan	μg/l	<0,50
Tetrachlormethan	μg/l	<0,50
Trichlorethen	μg/l	<0,50
1,1,2-Trichlorethan	μg/l	<5,0
Tetrachlorethen	μg/l	0,88
Chlorbenzol	μg/l	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50
Vinylchlorid	μg/l	<0,50
Summe LHKW	μg/l	0,88
AKW		
Benzol	μg/l	<0,50
Toluol	μg/l	<0,50
Ethylbenzol	μg/l	<0,50
m/p-Xylol	μg/l	<0,50
o-Xylol	μg/l	<0,50
Styrol	μg/l	<5,0
Isopropylbenzol	μg/l	<5,0
Propylbenzol	μg/l	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0
Indan	μg/l	<5,0
Inden	μg/l	<5,0
1,2,3,4-Tetralin	μg/l	<5,0
Naphthalin	μg/l	<5,0
2-Methylnaphthalin	μg/l	<5,0
1-Methylnaphthalin	μg/l	<5,0
Summe BTEX	μg/l	n. berechenbar

Untersuchungsmethoden

Untersuchungen im Wasser

DIN 38406 E5-1 Ammonium DIN EN ISO 10304-1 Chlorid Cyanid (ges.) DIN 38405 D7 KW-Index **DIN EN ISO 9377-2** LAK analog DIN 38407 F9 DIN EN ISO 10304-1 Nitrat DIN EN ISO 10304-1 Nitrit Phenolindex DIN 38409 H37 Sulfat DIN EN ISO 10304-1 Sulfid DIN 38405 D26 TOC **DIN EN 1484**

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

PAK nach US EPA E DIN 38407 F39

DIN EN ISO 11885 Arsen Blei DIN EN ISO 11885 Bor DIN EN ISO 11885 **DIN EN ISO 11885** Cadmium Chrom DIN EN ISO 11885 Kalium DIN EN ISO 11885 Kupfer DIN EN ISO 11885 Nickel **DIN EN ISO 11885** Quecksilber **DIN EN 1483** Zink **DIN EN ISO 11885**

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-1
Datum	02.08.2013
Uhrzeit	00:80
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780018
Pegeldurchmesser	
Wasserstand vorher ROK [m]	3,70
Wasserstand nachher ROK [r	3,72
Sohle ROK [m]	15,63
Entnahmetiefe [m]	5,70
Pumpleistung [l/min]	42
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	1500
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	7,15
Leitfähigkeit [µS/cm]	399
Sauerstoffgehalt [mg/l]	0,8
Redox-Spannung [mV]	151
Temperatur [°C]	11,4
Probenübergabe Labor	
Bemerkung	messung oberkante Träger

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-2
Datum	05.08.2013
Uhrzeit	12:30
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780054
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,24
Wasserstand nachher ROK [r	3,41
Sohle ROK [m]	11,55
Entnahmetiefe [m]	5,50
Pumpleistung [l/min]	20
Art der Probenahme	Pumpprobe
Probenahmegerät	MP1
Abgepumpte Menge [L]	400
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	schwach Aromatisch
pH-Wert	7,13
Leitfähigkeit [µS/cm]	528
Sauerstoffgehalt [mg/l]	0,9
Redox-Spannung [mV]	134
Temperatur [°C]	11,6
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-3
Datum	02.08.2013
Uhrzeit	11:30
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780055
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	2,31
Wasserstand nachher ROK [r	2,74
Sohle ROK [m]	12,90
Entnahmetiefe [m]	4,50
Pumpleistung [l/min]	20
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	400
Färbung	ohne
Trübung	schwach
Bodensatz	ohne
Geruch	ohne
pH-Wert	6,95
Leitfähigkeit [µS/cm]	513
Sauerstoffgehalt [mg/l]	0,7
Redox-Spannung [mV]	217
Temperatur [°C]	13,5
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-4
Datum	02.08.2013
Uhrzeit	12:30
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780057
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,82
Wasserstand nachher ROK [r	7,03
Sohle ROK [m]	11,36
Entnahmetiefe [m]	6
Pumpleistung [l/min]	10
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	300
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	7,20
Leitfähigkeit [μS/cm]	685
Sauerstoffgehalt [mg/l]	1,2
Redox-Spannung [mV]	202
Temperatur [°C]	14,3
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-5
Datum	05.08.2013
Uhrzeit	13:00
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780061
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,31
Wasserstand nachher ROK [r	4,83
Sohle ROK [m]	5,15
Entnahmetiefe [m]	5,00
Pumpleistung [l/min]	6
Art der Probenahme	Pumpprobe
Probenahmegerät	Eikelkamp
Abgepumpte Menge [L]	100
Färbung	schwach grau
Trübung	stark
Bodensatz	gering
Geruch	schwach Aromatisch
pH-Wert	6,85
Leitfähigkeit [µS/cm]	581
Sauerstoffgehalt [mg/l]	1,0
Redox-Spannung [mV]	192
Temperatur [°C]	15,7
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-6
Datum	05.08.2013
Uhrzeit	13:30
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780110,1
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,17
Wasserstand nachher ROK [r	3,32
Sohle ROK [m]	11,00
Entnahmetiefe [m]	5,50
Pumpleistung [l/min]	20
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	400
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	6,84
Leitfähigkeit [µS/cm]	384
Sauerstoffgehalt [mg/l]	0,7
Redox-Spannung [mV]	181
Temperatur [°C]	10,89
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-7
Datum	02.08.2013
Uhrzeit	09:45
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780136-1
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,31
Wasserstand nachher ROK [r	5,53
Sohle ROK [m]	5,65
Entnahmetiefe [m]	5,60
Pumpleistung [l/min]	8
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	100
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	schwach faulig
pH-Wert	7,18
Leitfähigkeit [µS/cm]	6,94
Sauerstoffgehalt [mg/l]	1,1
Redox-Spannung [mV]	204
Temperatur [°C]	11,2
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-8
Datum	02.08.2013
Uhrzeit	10:15
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780137-1
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,23
Wasserstand nachher ROK [r	4,93
Sohle ROK [m]	7,15
Entnahmetiefe [m]	5,50
Pumpleistung [l/min]	8
Art der Probenahme	Pumpprobe
Probenahmegerät	MP1
Abgepumpte Menge [L]	150
Färbung	ohne
Trübung	schwach
Bodensatz	ohne
Geruch	ohne
pH-Wert	7,15
Leitfähigkeit [µS/cm]	460
Sauerstoffgehalt [mg/l]	0,7
Redox-Spannung [mV]	207
Temperatur [°C]	11,2
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-9
Datum	05.08.2013
Uhrzeit	08:15
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780170
Pegeldurchmesser	100
Wasserstand vorher ROK [m]	3,26
Wasserstand nachher ROK [r	3,58
Sohle ROK [m]	10,09
Entnahmetiefe [m]	5,30
Pumpleistung [l/min]	8
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	100
Färbung	ohne
Trübung	sehr schwach
Bodensatz	ohne
Geruch	ohne
pH-Wert	7,20
Leitfähigkeit [µS/cm]	550
Sauerstoffgehalt [mg/l]	1,2
Redox-Spannung [mV]	203
Temperatur [°C]	11,8
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-10
Datum	02.08.2013
Uhrzeit	12:00
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780171
Pegeldurchmesser	100
Wasserstand vorher ROK [m]	3,83
Wasserstand nachher ROK [r	4,05
Sohle ROK [m]	11,00
Entnahmetiefe [m]	6
Pumpleistung [l/min]	15
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	170
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	7,43
Leitfähigkeit [µS/cm]	845
Sauerstoffgehalt [mg/l]	0,6
Redox-Spannung [mV]	199
Temperatur [°C]	13,8
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-11
Datum	02.08.2013
Uhrzeit	09:00
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780164
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,88
Wasserstand nachher ROK [r	3,92
Sohle ROK [m]	10,55
Entnahmetiefe [m]	6
Pumpleistung [I/min]	15
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	250
Färbung	ohne
Trübung	schwach
Bodensatz	ohne
Geruch	schwach Aromatisch
pH-Wert	7,18
Leitfähigkeit [µS/cm]	702
Sauerstoffgehalt [mg/l]	1,2
Redox-Spannung [mV]	204
Temperatur [°C]	12,4
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-12
Datum	05.08.2013
Uhrzeit	12:00
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780056
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,80
Wasserstand nachher ROK [r	4,21
Sohle ROK [m]	10,70
Entnahmetiefe [m]	5,80
Pumpleistung [l/min]	10
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	200
Färbung	schwach gelb
Trübung	ohne
Bodensatz	ohne
Geruch	Arom.
pH-Wert	7,72
Leitfähigkeit [μS/cm]	578
Sauerstoffgehalt [mg/l]	0,5
Redox-Spannung [mV]	185
Temperatur [°C]	11,8
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-13
Datum	05.08.2013
Uhrzeit	10:00
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780058
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,70
Wasserstand nachher ROK [r	3,81
Sohle ROK [m]	11,29
Entnahmetiefe [m]	6,00
Pumpleistung [l/min]	10
Art der Probenahme	Pumpprobe
Probenahmegerät	MP1
Abgepumpte Menge [L]	280
Färbung	ohne
Trübung	schwach
Bodensatz	ohne
Geruch	ohne
pH-Wert	7,29
Leitfähigkeit [µS/cm]	416
Sauerstoffgehalt [mg/l]	0,3
Redox-Spannung [mV]	210
Temperatur [°C]	12,5
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-14
Datum	05.08.2013
Uhrzeit	08:45
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780078
Pegeldurchmesser	50
Wasserstand vorher ROK [m]	3,23
Wasserstand nachher ROK [r	4,12
Sohle ROK [m]	11,25
Entnahmetiefe [m]	5,50
Pumpleistung [l/min]	6
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	100
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	schwach Arom.
pH-Wert	7,17
Leitfähigkeit [µS/cm]	543
Sauerstoffgehalt [mg/l]	0,6
Redox-Spannung [mV]	149
Temperatur [°C]	12,0
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-15
Datum	05.08.2013
Uhrzeit	09:15
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780079
Pegeldurchmesser	50
Wasserstand vorher ROK [m]	3,16
Wasserstand nachher ROK [r	3,99
Sohle ROK [m]	12,40
Entnahmetiefe [m]	5,50
Pumpleistung [l/min]	6
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	150
Färbung	ohne
Trübung	sehr schwach
Bodensatz	ohne
Geruch	muffig
pH-Wert	6,91
Leitfähigkeit [µS/cm]	571
Sauerstoffgehalt [mg/l]	1,1
Redox-Spannung [mV]	169
Temperatur [°C]	12,1
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-16
Datum	02.08.2013
Uhrzeit	13:45
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780100
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,49
Wasserstand nachher ROK [r	3,55
Sohle ROK [m]	13,90
Entnahmetiefe [m]	5,50
Pumpleistung [l/min]	20
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	400
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	7,11
Leitfähigkeit [μS/cm]	922
Sauerstoffgehalt [mg/l]	0,7
Redox-Spannung [mV]	168
Temperatur [°C]	13,0
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-17
Datum	02.08.2013
Uhrzeit	13:15
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780101
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,48
Wasserstand nachher ROK [r	3,61
Sohle ROK [m]	14,72
Entnahmetiefe [m]	5,50
Pumpleistung [I/min]	20
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	400
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	schwach Arom.
pH-Wert	7,27
Leitfähigkeit [µS/cm]	844
Sauerstoffgehalt [mg/l]	0,6
Redox-Spannung [mV]	179
Temperatur [°C]	12,7
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-18
Datum	05.08.2013
Uhrzeit	10:40
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780130
Pegeldurchmesser	125
Wasserstand vorher ROK [m]	3,06
Wasserstand nachher ROK [r	3,17
Sohle ROK [m]	12,35
Entnahmetiefe [m]	5,10
Pumpleistung [l/min]	10
Art der Probenahme	Pumpprobe
Probenahmegerät	MP1
Abgepumpte Menge [L]	300
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	Arom. stechend
pH-Wert	7,20
Leitfähigkeit [μS/cm]	561
Sauerstoffgehalt [mg/l]	0,9
Redox-Spannung [mV]	148
Temperatur [°C]	11,9
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-19
Datum	02.08.2013
Uhrzeit	10:50
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780166
Pegeldurchmesser	100
Wasserstand vorher ROK [m]	2,13
Wasserstand nachher ROK [r	2,31
Sohle ROK [m]	15,72
Entnahmetiefe [m]	4,50
Pumpleistung [l/min]	15
Art der Probenahme	Pumpprobe
Probenahmegerät	MP1
Abgepumpte Menge [L]	320
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	6,95
Leitfähigkeit [μS/cm]	423
Sauerstoffgehalt [mg/l]	0,6
Redox-Spannung [mV]	215
Temperatur [°C]	11,3
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-20
Datum	05.08.2013
Uhrzeit	14:00
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780167
Pegeldurchmesser	100
Wasserstand vorher ROK [m]	2,99
Wasserstand nachher ROK [r	3,41
Sohle ROK [m]	18,98
Entnahmetiefe [m]	5
Pumpleistung [I/min]	15
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	380
Färbung	ohjne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	6,86
Leitfähigkeit [μS/cm]	746
Sauerstoffgehalt [mg/l]	0,7
Redox-Spannung [mV]	205
Temperatur [°C]	13,2
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-21
Datum	05.08.2013
Uhrzeit	11:20
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780168
Pegeldurchmesser	100
Wasserstand vorher ROK [m]	4,03
Wasserstand nachher ROK [r	4,35
Sohle ROK [m]	17,20
Entnahmetiefe [m]	6,00
Pumpleistung [l/min]	10
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	200
Färbung	ohne
Trübung	ohne
Bodensatz	ohne
Geruch	ohne
pH-Wert	6,86
Leitfähigkeit [µS/cm]	665
Sauerstoffgehalt [mg/l]	0,7
Redox-Spannung [mV]	167
Temperatur [°C]	11,3
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-22
Datum	02.08.2013
Uhrzeit	14:30
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780174
Pegeldurchmesser	100
Wasserstand vorher ROK [m]	3,93
Wasserstand nachher ROK [r	4,26
Sohle ROK [m]	13,28
Entnahmetiefe [m]	6
Pumpleistung [I/min]	20
Art der Probenahme	Pumpprobe
Probenahmegerät	MP 1
Abgepumpte Menge [L]	300
Färbung	grau
Trübung	stark
Bodensatz	gering
Geruch	ohne
pH-Wert	7,11
Leitfähigkeit [μS/cm]	713
Sauerstoffgehalt [mg/l]	0,9
Redox-Spannung [mV]	210
Temperatur [°C]	12,7
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-23
Datum	05.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780056
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	schwach Grau
Trübung	schwach
Bodensatz	gering
Geruch	muffig
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-24
Datum	05.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780058
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	ohne
Trübung	sehr schwach
Bodensatz	ohne
Geruch	ohne
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-25
Datum	05.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780078
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	ohne
Trübung	schwach
Bodensatz	ohne
Geruch	schwach Arom.
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-26
Datum	05.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780079
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	schwach grau
Trübung	mittel
Bodensatz	gering
Geruch	Arom. muffig
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-27
Datum	02.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780100
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	gelb
Trübung	mittel
Bodensatz	schwach
Geruch	Arom.
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-28
Datum	02.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780101
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	gelb
Trübung	stark
Bodensatz	mittel
Geruch	schwach Arom.
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-29
Datum	05.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780130
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	schwach grau
Trübung	stark
Bodensatz	mittel
Geruch	schwach faulig
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-30
Datum	02.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780166
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	schwach grau
Trübung	mittel
Bodensatz	gering
Geruch	ohne
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-31
Datum	05.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780167
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	schwach grau
Trübung	mittel
Bodensatz	gering
Geruch	ohne
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-32
Datum	05.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780168
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	schwach grau
Trübung	mittel
Bodensatz	gering
Geruch	Arom.
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-33
Datum	02.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780174
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Schöpfprobe
Probenahmegerät	VA -Schöpfer
Abgepumpte Menge [L]	
Färbung	Hellgrau
Trübung	stark
Bodensatz	gering
Geruch	ohne
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	

Projekt Reme-Gelände

Auftraggeber

Labor-Nr.	45590-34
Datum	02.08.2013
Uhrzeit	
Pobennehmer	D. Gusek/SEWA
Pegel-Nr.	780174
Pegeldurchmesser	
Wasserstand vorher ROK [m]	
Wasserstand nachher ROK [r	
Sohle ROK [m]	
Entnahmetiefe [m]	
Pumpleistung [l/min]	
Art der Probenahme	Pumpprobe
Probenahmegerät	MP1
Abgepumpte Menge [L]	
Färbung	grau
Trübung	stark
Bodensatz	mittel
Geruch	ohne
pH-Wert	
Leitfähigkeit [µS/cm]	
Sauerstoffgehalt [mg/l]	
Redox-Spannung [mV]	
Temperatur [°C]	
Probenübergabe Labor	
Bemerkung	10 cm. über sohle

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU45590
Berichtsdatum: 23.08.2013

Projekt: 014.060.019 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 01.08.2013

Probeneingang: 02.08.2013

Untersuchungszeitraum: 02.08.2013 — 23.08.2013

Probenahme durch: SEWA GmbH

Untersuchungsgegenstand: 34 Wasserproben

Andreas Görner

Andrews ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
45590 - 1	780018			
45590 - 2	780054			
45590 - 3	780055			
45590 - 4	780057			
	45590 - 1	45590 - 2	45590 - 3	4559

Untersuchungen im Wasser

Phenolindex	mg/l	<0,010	<0,010	<0,0050	<0,0050
TOC	mg/l	1,5	4,6	1,2	3,9
Chlorid	mg/l	11	6,5	28	29
Sulfat	mg/l	44	44	88	100
Nitrat	mg/l	<0,10	1,4	<0,10	<0,10
Nitrit	mg/l	<0,050	0,25	<0,050	0,54
Ammonium	mg/l	<0,030	0,99	0,20	0,41
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	0,011	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

				gesellschaft		
Labornummer	Ihre Pro	benbezeichnung		Probenentnahi	me	
45590 - 1		780018				
45590 - 2		780054				
45590 - 3		780055				
45590 - 4		780057				
43370 - 4			45500 2	45500 2	45500 4	
		45590 - 1	45590 - 2	45590 - 3	45590 - 4	
AKW						
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	
oluol	μg/l	<0,50	<0,50	<0,50	<0,50	
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	
n/p-Xylol	μg/l	<0,50	0,66	<0,50	<0,50	
o-Xylol	μg/l	<0,50	0,77	<0,50	<0,50	
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0	
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
ndan	μg/l	<5,0	<5,0	<5,0	<5,0	
nden	μg/l	<5,0	<5,0	<5,0	<5,0	
,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0	
laphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
?-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
Summe BTEX	μg/l	n. berechenbar	1,4	n. berechenbar	n. berecher	
PAK nach US EPA						
Naphthalin	μg/l	<0,10	0,43	<0,10	<0,10	
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10	
Acenaphthen	μg/l	<0,10	0,35	<0,10	<0,10	
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10	
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050	
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050	
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050	
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(a)anthracen		<0,050	<0,050	<0,050	<0,050	
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050	
	μg/l		ŕ			
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050	
ndeno(123-cd)pyren	μg/l 	<0,050	<0,050	<0,050	<0,050	
Summe PAK n. US EPA	μg/l	n. berechenbar	0,78	n. berechenbar	n. berecher	
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berecher	

					gco
Labornummer	Ihre Prol	penbezeichnung		Probenentnah	ıme
45590 - 1		780018			
45590 - 2		780054			
45590 - 3		780055			
45590 - 4		780057			
		45590 - 1	45590 - 2	45590 - 3	4559
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,0010	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,12	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentnah	nme
45590 - 5	780061			
45590 - 6	780110,1			
45590 - 7	780136-1			
45590 - 8	780137-1			
	45590 - 5	45590 - 6	45590 - 7	4559

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	8,2	3,8	1,5	1,3
Chlorid	mg/l	21	7,0	36	23
Sulfat	mg/l	81	69	100	87
Nitrat	mg/l	3,4	0,63	0,56	0,14
Nitrit	mg/l	1,1	0,59	<0,050	<0,050
Ammonium	mg/l	2,3	0,54	0,21	0,33
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					Laborbetriebs- gesellschaft m.b
Labornummer	Ihre Pro	benbezeichnung		Probenentnahı	me
45590 - 5		780061			
45590 - 6		780110,1			
45590 - 7		780136-1			
45590 - 8		780137-1			
		45590 - 5	45590 - 6	45590 - 7	45590 - 8
AIZIM					
AKW	_				
Benzol	μg/l "	10	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l "	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l "	1,5	<0,50	<0,50	<0,50
o-Xylol	μg/l 	1,4	<0,50	<0,50	<0,50
Styrol	μg/l "	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	13	n. berechenbar	n. berechenbar	n. berechenbar
PAK nach US EPA					
Naphthalin	μg/l	0,42	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	0,56	<0,10	<0,10	<0,10
Acenaphthen	μg/l	2,9	<0,10	<0,10	<0,10
Fluoren	μg/l	0,43	<0,10	<0,10	<0,10
Phenanthren	μg/l	0,56	<0,050	<0,050	<0,050
Anthracen	μg/l	0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	0,42	<0,050	<0,050	<0,050
Pyren	μg/l	0,22	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	5,6	n. berechenbar	n. berechenbar	n. berechenbar

μg/l

Summe PAK n.TrinkwV

n. berechenbar

n. berechenbar

n. berechenbar

n. berechenbar

					gco
Labornummer	Ihre Prol	benbezeichnung		Probenentnal	ıme
45590 - 5		780061			
45590 - 6		780110,1			
45590 - 7	,	780136-1			
45590 - 8	,	780137-1			
		45590 - 5	45590 - 6	45590 - 7	4559
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	0,043	<0,0050	<0,0050	
Cadmium	mg/l	<0,0010	<0,00050	<0,0010	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	0,016	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,47	0,017	0,013	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
45590 - 9	780170	
45590 - 10	780171	
45590 - 11	780164	
45590 - 12	780056	
	45590 - 9 45	590 - 10 45590 - 11 45590

• Untersuchungen im Wasser

ma/l	√ 0.0050	~ 0.0050	<0.0050	<0,0050
•	,	,	,	15
•				8,4
_				61
•				0,23
_		•	•	0,082
_		,	,	1,8
•	,	•	•	<0,010
-				<0.0050
mg/l	<0,10	<0,10	<0,10	<0,10
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	0,68	<0,50	<0,50	<0,50
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	0,68	n. berechenbar	n. berechenbar	n. berechenbar
	ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	mg/l 3,4 mg/l 11 mg/l 68 mg/l 27 mg/l 1,8 mg/l <0,030 mg/l <0,010 mg/l <0,0050 mg/l <0,10 µg/l <5,0 µg/l <5,0 µg/l <5,0 µg/l <5,0 µg/l <0,50	mg/l 3,4 3,5 mg/l 11 33 mg/l 68 140 mg/l 27 0,12 mg/l 1,8 0,12 mg/l <0,030	mg/l 3,4 3,5 3,6 mg/l 11 33 7,9 mg/l 68 140 44 mg/l 27 0,12 1,6 mg/l 1,8 0,12 <0,050

				gesell		
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me	
45590 - 9		780170				
45590 - 10		780171				
45590 - 11		780164				
45590 - 12		780056				
1 3370 - 12						
		45590 - 9	45590 - 10	45590 - 11	45590 - 12	
AKW						
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	0,54	
			,		•	
o-Xylol Styrol	μg/l	<0,50	<0,50 <5,0	<0,50	<0,50 <5,0	
Styrol	μg/l	<5,0		<5,0		
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
Indan	μg/l	<5,0	<5,0	<5,0	<5,0	
Inden	μg/l	<5,0	<5,0	<5,0	<5,0	
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0	
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	0,54	
PAK nach US EPA						
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10	
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10	
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10	
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10	
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,05	
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,05	
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05	
Pyren	μg/l	<0,050	<0,050	<0,050	<0,05	
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05	
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,05	
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05	
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05	
Benzo(a)pyren		<0,050	<0,050	<0,050	<0,05	
	μg/l					
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05	
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,05	
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,05	
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche	
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche	

					goodi
Labornummer	Ihre Prol	benbezeichnung		Probenentna	hme
45590 - 9		780170			
45590 - 10		780171			
45590 - 11		780164			
45590 - 12		780056			
		45590 - 9	45590 - 10	45590 - 11	45590
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,012	0,017	0,022	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
45590 - 13	780058			
45590 - 14	780078			
45590 - 15	780079			
45590 - 16	780100			
	45590 - 13	45590 - 14	45590 - 15	4559

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	2,6	3,2	3,4	3,2
Chlorid	mg/l	15	19	22	13
Sulfat	mg/l	76	94	100	100
Nitrat	mg/l	<0,10	<0,10	0,19	0,25
Nitrit	mg/l	<0,050	<0,050	0,083	<0,050
Ammonium	mg/l	0,75	0,96	0,94	1,0
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft m.l
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
45590 - 13		780058			
45590 - 14		780078			
45590 - 15		780079			
45590 - 16		780100			
43370 - 10					
		45590 - 13	45590 - 14	45590 - 15	45590 - 16
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol		<0,50	<0,50	<0,50	<0,50
	μg/l				
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l "	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba
PAK nach US EPA					
Naphthalin	ug/l	<0,10	<0,10	<0,10	<0,10
	μg/l		<0,10	,	<0,10 <0,10
Acenaphthylen	μg/l	<0,10		<0,10	
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l "	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba
	F-3···				

					3
Labornummer	Ihre Probenbezeichnung		Probenentnahme		
45590 - 13		780058			
45590 - 14		780078			
45590 - 15	780079				
45590 - 16		780100			
		45590 - 13	45590 - 14	45590 - 15	4559
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,0010	<0,0010	<0,0010	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
45590 - 17	780101			
45590 - 18	780130			
45590 - 19	780166			
45590 - 20	780167			
	45590 - 17	45590 - 18	45590 - 19	4559

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,010
TOC	mg/l	2,1	3,2	<1,0	3,6
Chlorid	mg/l	10	20	22	34
Sulfat	mg/l	250	97	77	170
Nitrat	mg/l	0,23	0,15	<0,10	<0,10
Nitrit	mg/l	0,22	0,059	<0,050	<0,050
Ammonium	mg/l	0,73	0,97	0,042	0,14
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
45590 - 17		780101			
45590 - 18		780130			
45590 - 19		780166			
45590 - 20		780167			
43390 - 20					
		45590 - 17	45590 - 18	45590 - 19	45590 - 20
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Γoluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen		<0,050	<0,050	<0,050	<0,050
	μg/l				
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche

					3
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	ıme
45590 - 17		780101			
45590 - 18		780130			
45590 - 19		780166			
45590 - 20		780167			
		45590 - 17	45590 - 18	45590 - 19	4559
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,0010	<0,0010	<0,0010	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	0,011	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
45590 - 21	780168			
45590 - 22	780174			
45590 - 23	780056			
45590 - 24	780058			
	45590 - 21	45590 - 22	45590 - 23	4559

Untersuchungen im Wasser

Phenolindex	mg/l	<0,010	<0,0050		
TOC	mg/l	2,8	2,8		
Chlorid	mg/l	3,2	15		
Sulfat	mg/l	19	110		
Nitrat	mg/l	0,18	0,21		
Nitrit	mg/l	<0,050	0,055		
Ammonium	mg/l	0,38	0,89		
Sulfid	mg/l	<0,010	<0,010		
Cyanid (ges.)	mg/l	<0,0050	<0,0050		
LAK	μg/l			<50	<50
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	3,3
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	3,3

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
45590 - 21		780168			
45590 - 22		780174			
45590 - 23		780056			
45590 - 24		780058			
		45590 - 21	45590 - 22	45590 - 23	45590 - 24
4 <i>KW</i>					
Benzol	μg/l	0,79	<0,50	<0,50	<0,50
Toluol	μg/l	1,3	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	7,0	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	110	<0,50	<0,50	<0,50
o-Xylol	μg/l	1,1	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	20	<5,0 <5,0	<5,0 <5,0	<5,0
Propylbenzol	μg/l	46	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
1,3,5-Trimethylbenzol	μg/l	32	<5,0 <5,0	<5,0 <5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	170	<5,0 <5,0	<5,0 <5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	27	<5,0 <5,0	<5,0 <5,0	<5,0
ndan	μg/l	32	<5,0 <5,0	<5,0 <5,0	<5,0
nden	μg/l	<5,0	<5,0 <5,0	<5,0 <5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0
Naphthalin	· -	7,7	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
Naprimalin 2-Methylnaphthalin	μg/l	<5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
	μg/l		<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
1-Methylnaphthalin Summe BTEX	μg/l	<5,0 120	n. berechenbar	n. berechenbar	n. bereche
Summe DTLX	μg/l	120	n. berechenbar	ii. berechenbar	II. Delecile
PAK nach US EPA					
Naphthalin	μg/l	7,2	<0,10		
Acenaphthylen	μg/l	<0,10	<0,10		
Acenaphthen	μg/l	<0,10	<0,10		
Fluoren	μg/l	<0,10	<0,10		
Phenanthren	μg/l	<0,050	<0,050		
Anthracen	μg/l	<0,050	<0,050		
Fluoranthen	μg/l	<0,050	<0,050		
Pyren	μg/l	<0,050	<0,050		
Benzo(a)anthracen	μg/l	<0,050	<0,050		
Chrysen	μg/l	<0,050	<0,050		
Benzo(b)fluoranthen	μg/l	<0,050	<0,050		
Benzo(k)fluoranthen	μg/l	<0,050	<0,050		
Benzo(a)pyren	μg/l	<0,050	<0,050		
Dibenz(ah)anthracen	μg/l	<0,050	<0,050		
Benzo(ghi)perylen	μg/l	<0,050	<0,050		
ndeno(123-cd)pyren	μg/l	<0,050	<0,050		
Summe PAK n. US EPA	μg/l	7,2	n. berechenbar		
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar		

Labornummer	Ihre Probenbezeichnung	Probenentnahme
45590 - 21	780168	
45590 - 22	780174	
45590 - 23	780056	
45590 - 24	780058	

Metalle			
Arsen	mg/l	<0,010	<0,010
Blei	mg/l	<0,0050	<0,0050
Cadmium	mg/l	<0,00050	<0,00050
Chrom	mg/l	<0,0050	<0,0050
Kupfer	mg/l	<0,0050	<0,0050
Nickel	mg/l	<0,0050	<0,0050
Quecksilber	mg/l	<0,00020	<0,00020
Zink	mg/l	<0,010	<0,010

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
45590 - 25	780078			
45590 - 26	780079			
45590 - 27	780100			
45590 - 28	780101			
	45590 - 25	45590 - 26	45590 - 27	45590

• Untersuchungen im Wasser

<50	<50	<50	<50
<0,10	<0,10	<0,10	<0,10
<5,0	<5,0	<5,0	<5,0
<5,0	<5,0	<5,0	<5,0
<5,0	<5,0	<5,0	<5,0
<5,0	<5,0	<5,0	<5,0
<5,0	<5,0	<5,0	<5,0
<5,0	<5,0	<5,0	<5,0
<0,50	<0,50	<0,50	<0,50
<0,50	<0,50	<0,50	<0,50
<0,50	<0,50	<0,50	<0,50
<0,50	<0,50	<0,50	<0,50
<5,0	<5,0	<5,0	<5,0
<0,50	<0,50	<0,50	<0,50
<5,0	<5,0	<5,0	<5,0
<0,50	<0,50	<0,50	<0,50
<0,50	<0,50	<0,50	<0,50
n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
<0,50	<0,50	<0,50	<0,50
<0,50 <0,50	<0,50 <0,50	<0,50 <0,50	<0,50 <0,50
<0,50	<0,50	<0,50	<0,50
<0,50 <0,50	<0,50 <0,50	<0,50 <0,50	<0,50 <0,50
<0,50 <0,50 <0,50	<0,50 <0,50 <0,50	<0,50 <0,50 <0,50	<0,50 <0,50 <0,50
<0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50
<0,50 <0,50 <0,50 <0,50 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <
<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <
<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <
	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <0,50 <0,50 <0,50 <5,0 <0,50 <5,0 <0,50 <5,0 <0,50	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<5,0

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
45590 - 29	780130			
45590 - 30	780166			
45590 - 31	780167			
45590 - 32	780168			
	45590 - 29	45590 - 30	45590 - 31	4559

Untersuchungen im Wasser

LAIZ		-50	50	50	50
LAK	μg/l	<50	<50	<50	<50
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
Summe LHKW AKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
	μg/l μg/l	n. berechenbar <0,50	n. berechenbar	n. berechenbar <0,50	n. berechenbar
AKW					
AKW Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
AKW Benzol Toluol	μg/l μg/l	<0,50 <0,50	<0,50 <0,50	<0,50 <0,50	<0,50 1,8
AKW Benzol Toluol Ethylbenzol	hâ\l hâ\l	<0,50 <0,50 <0,50	<0,50 <0,50 <0,50	<0,50 <0,50 <0,50	<0,50 1,8 1,3
AKW Benzol Toluol Ethylbenzol m/p-Xylol	hâ\I hâ\I hâ\I	<0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50	<0,50 1,8 1,3 14
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol	hâ\l hâ\l hâ\l	<0,50 <0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50 <0,50	<0,50 <0,50 <0,50 <0,50 <0,50	<0,50 1,8 1,3 14 <0,50
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol	hâ\I hâ\I hâ\I hâ\I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol	hâ\I hâ\I hâ\I hâ\I hâ\I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol	hâ\l hâ\l hâ\l hâ\l hâ\l	<0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	hâ\ hâ\ hâ\ hâ\ hâ\	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	hâ\ hâ\ hâ\ hâ\ hâ\ hâ\	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,3-Trimethylbenzol Indan	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden	hā\l hā\l hā\l hā\l hā\l hā\l hā\l hā\l	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	hâ\ hâ\ hâ\ hâ\ hâ\ hâ\	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0	<0,50 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<0,50 1,8 1,3 14 <0,50 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,

Labornummer	Ihre Probenbezeichnung	Probenentnahme
45590 - 33	780174	
45590 - 34	780174	

Untersuchungen im Wasser

LAK	μg/l	<50	<50
KW-Index	mg/l	<0,10	<0,10
LUGUENO			
LHKW+VC			
1,1-Dichlorethan	μg/l	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar
AKW			
		0.50	0.50
Benzol	μg/l	<0,50	<0,50
Toluol	μg/l 	2,4	1,4
Ethylbenzol	μg/l 	<0,50	<0,50
m/p-Xylol	μg/l 	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0
Indan	μg/l	<5,0	<5,0
Inden	μg/l	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0
Summe BTEX			
Julius 2 : 2 / 1	μg/l	2,4	1,4

Untersuchungsmethoden

Untersuchungen im Wasser

DIN 38406 E5-1 Ammonium DIN EN ISO 10304-1 Chlorid Cyanid (ges.) DIN 38405 D7 KW-Index **DIN EN ISO 9377-2** LAK analog DIN 38407 F9 DIN EN ISO 10304-1 Nitrat DIN EN ISO 10304-1 Nitrit Phenolindex DIN 38409 H37 Sulfat DIN EN ISO 10304-1 Sulfid DIN 38405 D26 TOC **DIN EN 1484**

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

PAK nach US EPA E DIN 38407 F39

DIN EN ISO 11885 Arsen Blei DIN EN ISO 11885 Cadmium DIN EN ISO 11885 **DIN EN ISO 11885** Chrom Kupfer DIN EN ISO 11885 Nickel DIN EN ISO 11885 Quecksilber **DIN EN 1483** Zink **DIN EN ISO 11885**

Probenahmeprotokoll

Gemeinde Mönchengladbach

Analysenregister-Nr.	1	2	3	4
Datum	14.02.2014	13.02.2014	14.02.2014	14.02.2014
Uhrzeit	10:40	12:50	11:20	12:35
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780018	780054	780055	780057
Pegeldurchmesser		125	125	125
Wasserstand vorher ROK [m]	3,45	2,98	2,05	3,76
Wasserstand nachher ROK [m]	3,47	3,14	2,71	5,98
Sohle ROK [m]	15,63	11,55	12,90	11,36
Entnahmetiefe [m]	5,50	5,00	4,00	6,00
Pumpleistung [l/min]	42	20	20	15
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	1500	320	320	300
Färbung	ohne	ohne	ohne	ohne
Trübung	ohne	ohne	schwach	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	ohne	schwach arom.	ohne	ohne
pH-Wert	7,11	7,02	7,05	7,21
Leitfähigkeit [μS/cm]	360	558	704	593
Sauerstoffgehalt [mg/l]	0,7	0,8	0,9	1,4
Redox-Spannung [mV]	187	159	213	208
Temperatur [°C]	9,8	11,9	12,5	13,2
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	5	6	7	8
Datum	13.02.2014	13.02.2014	14.02.2014	14.02.2014
Uhrzeit	12:15	11:45	09:45	10:10
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780061	780110,1	780136,1	780137,1
Pegeldurchmesser	125	125	125	100
Wasserstand vorher ROK [m]	2,98	2,80	3,08	3,15
Wasserstand nachher ROK [m]	3,57	3,96	5,50	3,36
Sohle ROK [m]	5,15	11,00	5,65	10,09
Entnahmetiefe [m]	5,00	5,00	5	5,20
Pumpleistung [l/min]	6,00	20	8	8
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	100	300	100	160
Färbung	ohne	ohne	schwach gelb	schwach grau
Trübung	ohne	ohne	stark	mittel
Bodensatz	ohne	ohne	gering	ohne
Geruch	schwach muffig	ohne	muffig	ohne
pH-Wert	6,91	7,07	7,28	7,19
Leitfähigkeit [μS/cm]	476	572	526	328
Sauerstoffgehalt [mg/l]	1,2	0,4	1,3	0,5
Redox-Spannung [mV]	193	189	189	190
Temperatur [°C]	13,8	11,1	11,3	11,1
Probenübergabe Labor				
Bemerkung				

Uhrzeit 15:10 12:15 09:45	02.2014
	10:20
Pohamahman D.O. I. D.O. I. D.O. I. D.O. I.	
PobennehmerD. GusekD. GusekD. Gusek	Gusek
Pegel-Nr. 780170 780171 780056 78	80058
Pegeldurchmesser100100125	125
Wasserstand vorher ROK [m] 3,15 3,77 3,51	3,41
Wasserstand nachher ROK [m] 3,36 3,95 3,91	3,50
Sohle ROK [m] 10,09 11,00 10,70	11,29
Entnahmetiefe [m] 5,20 6 5,50	5,50
Pumpleistung [I/min] 8 15 10	10
Art der Probenahme Pumpprobe Pumpprobe Pumpprobe Pun	npprobe
Probenahmegerät MP1 MP1 MP1 I	MP 1
Abgepumpte Menge [L] 160 170 200	280
Färbung ohne ohne schwach gelb	ohne
Trübung sehr schwach ohne ohne	ohne
Bodensatz ohne ohne ohne	ohne
Geruch ohne ohne schw	ach muffig
pH-Wert 7,30 7,38 7,71	7,20
Leitfähigkeit [μS/cm] 408 675 591	451
Sauerstoffgehalt [mg/l] 1,5 0,9 0,3	0,1
Redox-Spannung [mV] 202 215 171	193
Temperatur [°C] 12,0 13,1 12,1	13,0
Probenübergabe Labor	
Bemerkung	

Analysenregister-Nr.	13	14	15	16
Datum	14.02.2014	14.02.2014	14.02.2014	14.02.2014
Uhrzeit	13:10	13:30	13:50	14:20
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780078	780079	780100	780101
Pegeldurchmesser	50	50	125	125
Wasserstand vorher ROK [m]	2,87	2,86	3,34	2,68
Wasserstand nachher ROK [m]	4,36	3,52	3,41	3,12
Sohle ROK [m]	11,25	12,40	13,90	18,95
Entnahmetiefe [m]	5,00	5,00	5,50	4,70
Pumpleistung [l/min]	6,00	6,00	25	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	100	120	400	580
Färbung	ohne	ohne	ohne	ohne
Trübung	ohne	sehr schwach	ohne	schwach
Bodensatz	ohne	ohne	ohne	ohne
Geruch	schwach arom.	muffig	ohne	schwach arom.
pH-Wert	7,16	6,98	7,33	7,55
Leitfähigkeit [μS/cm]	523	601	866	1180
Sauerstoffgehalt [mg/l]	0,6	0,9	0,7	0,4
Redox-Spannung [mV]	155	169	181	157
Temperatur [°C]	11,8	11,9	13,0	12,6
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	17	18	19	20
Datum	13.02.2014	14.02.2014	13.02.2014	13.02.2014
Uhrzeit	10:30	11:45	11:00	09:00
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780130	780166	780167	780168
Pegeldurchmesser	125	100	100	100
Wasserstand vorher ROK [m]	2,77	1,87	2,68	3,73
Wasserstand nachher ROK [m]	2,89	2,03	3,12	3,98
Sohle ROK [m]	12,35	15,72	18,95	17,20
Entnahmetiefe [m]	4,80	4,00	4,70	4,80
Pumpleistung [l/min]	15	15	15	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	350	320	380	320
Färbung	ohne	ohne	ohne	ohne
Trübung	schwach	schwach	ohne	schwach
Bodensatz	ohne	ohne	ohne	ohne
Geruch	arom. stechend	ohne	ohne	arom.
pH-Wert	7,43	6,97	7,00	6,89
Leitfähigkeit [μS/cm]	440	416	897	719
Sauerstoffgehalt [mg/l]	1,0	0,5	0,5	0,8
Redox-Spannung [mV]	166	210	215	170
Temperatur [°C]	10,9	11,5	12,8	11,8
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	21	22	23	24
Datum	13.02.2014	14.02.2014	14.02.2014	14.02.2014
Uhrzeit	13:45	07:45	08:40	08:10
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780168	780168	780169	780172
Pegeldurchmesser	100	100	100	100
Wasserstand vorher ROK [m]	4,18	3,72	4,16	4,15
Wasserstand nachher ROK [m]	4,27	3,95	4,21	4,18
Sohle ROK [m]	17,20	17,20	19,50	19,65
Entnahmetiefe [m]	6,20	4,80	6,20	6,20
Pumpleistung [l/min]	20	20	20	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	300	320	360	360
Färbung	ohne	schwach grau	grau	schwach grau
Trübung	ohne	mittel	stark	mittelohne
Bodensatz	ohne	sehr gering	gering	geringohne
Geruch	arom.	arom.	arom.	schwach muffig
pH-Wert	6,76	6,75	7,40	7,36
Leitfähigkeit [μS/cm]	769	715	791	919
Sauerstoffgehalt [mg/l]	0,7	0,9	0,5	0,1
Redox-Spannung [mV]	164	159	193	183
Temperatur [°C]	12,1	11,1	11,7	11,7
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	25	26	27	28
Datum	14.02.2014	14.02.2014	13.02.2014	13.02.2014
Uhrzeit	09:15	15:40		
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780173	780174	780056	780058
Pegeldurchmesser	100	100		
Wasserstand vorher ROK [m]	4,14	3,76		
Wasserstand nachher ROK [m]	4,18	3,98		
Sohle ROK [m]	19,65	13,30		
Entnahmetiefe [m]	6,20	5,80		
Pumpleistung [l/min]	20	20		
Art der Probenahme	Pumpprobe	Pumpprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	MP 1	MP 1	Va- Schöpflot	Va- Schöpflot
Abgepumpte Menge [L]	360	220		
Färbung	grau	ohne	schwach gelb	ohne
Trübung	mittel	schwach	ohne	schwach
Bodensatz	gering	ohne	ohne	ohne
Geruch	schwach arom.	schwach arom.	arom.	schwach muffig
pH-Wert	7,43	7,21		
Leitfähigkeit [μS/cm]	591	712		
Sauerstoffgehalt [mg/l]	0,8	0,5		
Redox-Spannung [mV]	199	182		
Temperatur [°C]	12,1	11,3		
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	29	30	31	32
Datum	14.02.2014	14.02.2014	14.02.2014	14.02.2014
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780078	780079	780100	780101
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va- Schöpflot	Va- Schöpflot	Va- Schöpflot	Va- Schöpflot
Abgepumpte Menge [L]				
Färbung	rostrot	schwach gelb	ohne	schwach grau
Trübung	mittel	mittel	ohne	mittel
Bodensatz	mittel	gering	ohne	ohne
Geruch	arom.	muffig	ohne	schwach arom.
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	33	34	35	36
Datum	13.02.2014	14.02.2014	13.02.2014	13.02.2014
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780130	780166	780167	780168
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va- Schöpflot	Va- Schöpflot	Va- Schöpflot	Va- Schöpflot
Abgepumpte Menge [L]				
Färbung	ohne	ohne	ohne	ohne
Trübung	sehr schwach	sehr schwach	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	stechend arom.	ohne	ohne	arom.
pH-Wert				
Leitfähigkeit [µS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				morgens

ı				1
Analysenregister-Nr.	37	38	39	40
Datum	13.02.2014	14.02.2014	14.02.2014	14.02.2014
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780168	780168	780169	780172
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va- Schöpflot	Va- Schöpflot	Va- Schöpflot	Va- Schöpflot
Abgepumpte Menge [L]				
Färbung	ohne	schwach grau	grau	grau
Trübung	ohne	mittel	mittel	stark
Bodensatz	ohne	gering	gering	mittel
Geruch	arom.	arom.	arom.	muffig
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung	mittags	morgens		
		·	·	•

Analysenregister-Nr.	41	42
Datum	14.02.2014	14.02.2014
Uhrzeit		
Pobennehmer	D. Gusek	D. Gusek
Pegel-Nr.	780173	780174
Pegeldurchmesser		
Wasserstand vorher ROK [m]		
Wasserstand nachher ROK [m]		
Sohle ROK [m]		
Entnahmetiefe [m]		
Pumpleistung [l/min]		
Art der Probenahme	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va- Schöpflot	Va- Schöpflot
Abgepumpte Menge [L]		
Färbung	grau	ohne
Trübung	mittel	sehr schwach
Bodensatz	gering	ohne
Geruch	schwach arom.	schwach arom.
pH-Wert		
Leitfähigkeit [μS/cm]		
Sauerstoffgehalt [mg/l]		
Redox-Spannung [mV]		
Temperatur [°C]		
Probenübergabe Labor		
Bemerkung		

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU47380
Berichtsdatum: 06.03.2014

Projekt: 014.060.019 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 13.02.2014

Probeneingang: 13.02.2014

Untersuchungszeitraum: 13.02.2014 — 06.03.2014

Probenahme durch: SEWA GmbH

Untersuchungsgegenstand: 42 Wasserproben

Andreas Görner Laborleitung

Andrews ferm

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
47380 - 1	780017			
47380 - 2	780054			
47380 - 3	780055			
47380 - 4	780057			
	47380 - 1	47380 - 2	47380 - 3	4738

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	1,4	1,5	1,1	3,6
Chlorid	mg/l	11	6,0	29	32
Sulfat	mg/l	35	96	92	110
Nitrat	mg/l	0,21	11	<0,10	3,0
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	<0,030	0,83	0,17	0,42
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft m.b
Labornummer	Ihre Pro	benbezeichnung		Probenentnahr	ne
47380 - 1		780017			
47380 - 2		780054			
47380 - 3		780055			
47380 - 4		780057			
		47380 - 1	47380 - 2	47380 - 3	47380 - 4
		4/360 - 1	47300 - 2	47360 - 3	47380 - 4
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	0,12	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l 	n. berechenbar	0,12	n. berechenbar	n. berechenbar
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					yes
Labornummer	Ihre Prob	enbezeichnung		Probenentnal	ıme
47380 - 1		780017			
47380 - 2		780054			
47380 - 3		780055			
47380 - 4		780057			
		47380 - 1	47380 - 2	47380 - 3	4738
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	0,018	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentnahme	9
47380 - 5	780061			
47380 - 6	780110,1			
47380 - 7	780136			
47380 - 8	780137,1			
	47380 - 5 4	7380 - 6	47380 - 7	1738

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	6,7	4,5	1,8	1,8
Chlorid	mg/l	12	7,4	34	26
Sulfat	mg/l	66	58	120	120
Nitrat	mg/l	<0,10	4,1	0,16	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	2,1	0,33	0,26	0,40
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft m.b.
Labornummer	Ihre Prob	oenbezeichnung		Probenentnahı	me
47380 - 5		780061			
47380 - 6	,	780110,1			
47380 - 7		780136			
47380 - 8	,	780137,1			
			47290 (47290 7	47200 0
		47380 - 5	47380 - 6	47380 - 7	47380 - 8
AKW					
Benzol	μg/l	5,6	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	5,6	n. berechenbar	n. berechenbar	n. berechenbar
PAK nach US EPA	_				
Naphthalin	μg/l	0,42	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	0,37	<0,10	<0,10	<0,10
Acenaphthen	μg/l	2,0	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	2,8	n. berechenbar	n. berechenbar	n. berechenbar
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gco
Labornummer	Ihre Prob	penbezeichnung		Probenentnal	ıme
47380 - 5		780061			
47380 - 6	,	780110,1			
47380 - 7		780136			
47380 - 8	,	780137,1			
		47380 - 5	47380 - 6	47380 - 7	4738
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,011	0,017	0,025	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
47380 - 9	780170	
47380 - 10	780171	
47380 - 11	780056	
47380 - 12	780058	
	47380 - 9 47	380 - 10 47380 - 11 47380

• Untersuchungen im Wasser

	_				
Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	2,7	3,6	15	2,6
Chlorid	mg/l	12	36	9,8	15
Sulfat	mg/l	100	180	69	90
Nitrat	mg/l	9,8	0,52	0,12	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,048	0,92	1,7	0,75
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	0,0067
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	0,62	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	0,66	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,62	n. berechenbar	0,66	n. berechenbar

					gesellschaft m		
Labornummer	Ihre Pr	obenbezeichnung		Probenentnah	me		
47380 - 9		780170					
47380 - 10		780171					
47380 - 11		780056					
47380 - 12		780058					
			47200 10	47200 11	47200 12		
		47380 - 9	47380 - 10	47380 - 11	47380 - 12		
4 <i>KW</i>							
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50		
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50		
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50		
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0		
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0		
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0		
1,3,5-Trimethylbenzo	ρl μg/l	<5,0	<5,0	<5,0	<5,0		
1,2,4-Trimethylbenzo	pl μg/l	<5,0	<5,0	<5,0	<5,0		
1,2,3-Trimethylbenzo	ρl μg/l	<5,0	<5,0	<5,0	<5,0		
Indan	μg/l	<5,0	<5,0	<5,0	<5,0		
nden	μg/l	<5,0	<5,0	<5,0	<5,0		
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0		
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0		
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0		
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen		
PAK nach US EPA							
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10		
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10		
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10		
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10		
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050		
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050		
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050		
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050		
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050		
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050		
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050		
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050		
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050		
Dibenz(ah)anthracen	· -	<0,050	<0,050	<0,050	<0,050		
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050		
Indeno(123-cd)pyren		<0,050	<0,050	<0,050	<0,050		
Summe PAK n. US E	· =	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen		
Summe PAK n.Trink		n. berechenbar	n. berechenbar	n. berechenbar	n. berechen		

					3
Labornummer	Ihre Prob	penbezeichnung		Probenentnal	ıme
47380 - 9		780170			
47380 - 10		780171			
47380 - 11		780056			
47380 - 12		780058			
		47380 - 9	47380 - 10	47380 - 11	47380
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	0,0058	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
47380 - 13	780078			
47380 - 14	780079			
47380 - 15	780100			
47380 - 16	780101			
	47380 - 13	47380 - 14	47380 - 15	4738

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	4,2	4,0	3,5	4,1
Chlorid	mg/l	16	21	13	18
Sulfat	mg/l	110	120	99	100
Nitrat	mg/l	<0,10	<0,10	0,14	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,1	0,94	1,0	1,3
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

				gesellschaft n		
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me	
47380 - 13		780078				
47380 - 14		780079				
47380 - 15		780100				
47380 - 16		780101				
			47290 14	47200 15	47200 16	
		47380 - 13	47380 - 14	47380 - 15	47380 - 16	
AKW						
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0	
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0	
Indan	μg/l	<5,0	<5,0	<5,0	<5,0	
Inden	μg/l	<5,0	<5,0	<5,0	<5,0	
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0	
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0	
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen	
PAK nach US EPA						
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10	
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10	
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10	
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10	
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050	
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050	
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050	
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050	
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050	
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050	
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen	
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen	

					gco
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
47380 - 13		780078			
47380 - 14		780079			
47380 - 15		780100			
47380 - 16		780101			
		47380 - 13	47380 - 14	47380 - 15	4738
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	0,0059	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	0,0063	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
47380 - 17	780130	
47380 - 18	780166	
47380 - 19	780167	
47380 - 20	780168 13.2. 9:00	
	47380 - 17 47380 - 18	47380 - 19 4738

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	3,1	1,1	2,6	2,6
Chlorid	mg/l	18	23	29	3,3
Sulfat	mg/l	110	89	170	34
Nitrat	mg/l	<0,10	<0,10	<0,10	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,0	0,088	0,19	0,31
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	0,65	<0,50	<0,50	0,90
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,65	n. berechenbar	n. berechenbar	0,90

					gesellschaf
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
47380 - 17		780130			
47380 - 18		780166			
47380 - 19	780167				
47380 - 20	7801	68 13.2. 9:00			
17300 20	7001		45200 10	45200 10	45200 20
		47380 - 17	47380 - 18	47380 - 19	47380 - 20
4KW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Γoluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	7,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
I,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
I-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
- Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,05
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,05
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche

					gesens
Labornummer	Ihre Prob	enbezeichnung		Probenentna	hme
47380 - 17		780130			
47380 - 18		780166			
47380 - 19		780167			
47380 - 20	7801	68 13.2. 9:00			
		47380 - 17	47380 - 18	47380 - 19	47380 -
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	<
Blei	mg/l	<0,0050	<0,0050	<0,0050	<
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	<
Chrom	mg/l	<0,0050	<0,0050	<0,0050	<
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	<
Nickel	mg/l	<0,0050	<0,0050	<0,0050	<
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	<
Zink	mg/l	<0,010	<0,010	<0,010	<

Labornummer	Ihre Probenbezeichnung		Probenentnal	hme
47380 - 21	780168 13.02. 13:45			
47380 - 22	780168 14.02. 7:45			
47380 - 23	780169			
47380 - 24	780172			
	47380 - 21	47380 - 22	47380 - 23	47380

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	3,4	3,2	5,0	4,8
Chlorid	mg/l	11	3,1	17	10
Sulfat	mg/l	74	29	53	100
Nitrat	mg/l	<0,10	<0,10	3,2	3,4
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,34	0,34	1,1	0,57
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	0,58	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	0,58	n. berechenbar	n. berechenbar

					gesells
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
47380 - 21	78010	68 13.02. 13:45			
47380 - 22	7801	68 14.02. 7:45			
47380 - 23		780169			
47380 - 24		780172			
1,000 21			47200 22	47200 22	47200 0
		47380 - 21	47380 - 22	47380 - 23	47380 - 2
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0
oluol	μg/l	<0,50	<0,50	<0,50	<0
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,
Styrol	μg/l	<5,0	<5,0	<5,0	<5
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5
Propylbenzol	μg/l	<5,0	8,1	<5,0	<5,
,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,
,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,
,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,
ndan	μg/l	<5,0	<5,0	<5,0	<5,
nden	μg/l	<5,0	<5,0	<5,0	<5,
,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,
-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,
-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bered
PAK nach US EPA					
laphthalin	μg/l	<0,10	<0,10	<0,10	<0.
cenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,
cenaphthen	μg/l	<0,10	<0,10	<0,10	<0,
- Fluoren	μg/l	<0,10	<0,10	<0,10	<0,
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0.
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,
Pyren	μg/l	<0,050	<0,050	<0,050	<0,
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bered
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bered

					gco
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
47380 - 21	78016	68 13.02. 13:45			
47380 - 22	7801	68 14.02. 7:45			
47380 - 23		780169			
47380 - 24		780172			
		47380 - 21	47380 - 22	47380 - 23	47380
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	0,035	0,013	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
47380 - 25	780173			
47380 - 26	780174			
47380 - 27	780056 SP			
47380 - 28	780058 SP			
	47380 - 25	47380 - 26	47380 - 27	4738

• Untersuchungen im Wasser

Dhanalindau		-0.0050	-0.0050		
Phenolindex	mg/l	<0,0050	<0,0050		
TOC	mg/l	4,2	2,3		
Chlorid	mg/l	16	17		
Sulfat	mg/l	100	140		
Nitrat	mg/l	2,0	<0,10		
Nitrit	mg/l	<0,050	<0,050		
Ammonium	mg/l	0,80	0,90		
Sulfid	mg/l	<0,010	<0,010		
Cyanid (ges.)	mg/l	<0,0050	<0,0050		
LAK	μg/l			<50	<50
KW-Index	mg/l	<0,10	<0,10	<0,50	<0,50
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	8,6
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	8,6

					gesellschaft r
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
47380 - 25		780173			
47380 - 26		780174			
47380 - 27	5	780056 SP			
47380 - 28		780058 SP			
47300 - 20	•		4=200 24	45200 45	45200 20
		47380 - 25	47380 - 26	47380 - 27	47380 - 28
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	40,0	10,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen
PAK nach US EPA	, •				
	/!	-0.10	-0.10		
Naphthalin	μg/l	<0,10	<0,10		
Acenaphthylen	μg/l	<0,10	<0,10		
Acenaphthen	μg/l	<0,10	<0,10		
Fluoren	μg/l "	<0,10	<0,10		
Phenanthren	μg/l	<0,050	<0,050		
Anthracen	μg/l	<0,050	<0,050		
Fluoranthen	μg/l "	<0,050	<0,050		
Pyren	μg/l 	<0,050	<0,050		
Benzo(a)anthracen	μg/l	<0,050	<0,050		
Chrysen	μg/l	<0,050	<0,050		
Benzo(b)fluoranthen	μg/l	<0,050	<0,050		
Benzo(k)fluoranthen	μg/l	<0,050	<0,050		
Benzo(a)pyren	μg/l	<0,050	<0,050		
Dibenz(ah)anthracen	μg/l	<0,050	<0,050		
Benzo(ghi)perylen	μg/l	<0,050	<0,050		
Indeno(123-cd)pyren	μg/l	<0,050	<0,050		
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar		
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar		

Labornummer	Ihre Probenbezeichnung	Probenentnahme
47380 - 25	780173	
47380 - 26	780174	
47380 - 27	780056 SP	
47380 - 28	780058 SP	

47380 - 25	47380 - 26	47380 - 27	47380 - 28

Meta	lle

Arsen	mg/l	<0,010	<0,010
Blei	mg/l	0,010	<0,0050
Cadmium	mg/l	<0,00050	<0,00050
Chrom	mg/l	0,0081	<0,0050
Kupfer	mg/l	<0,0050	<0,0050
Nickel	mg/l	<0,0050	<0,0050
Quecksilber	mg/l	<0,00020	<0,00020
Zink	mg/l	0,019	0,044

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
47380 - 29	780078 SP			
47380 - 30	780079 SP			
47380 - 31	780100 SP			
47380 - 32	780101 SP			
	47380 - 29	47380 - 30	47380 - 31	4738

• Untersuchungen im Wasser

LAK	ua/l	<50	<50	<50	<50
KW-Index	μg/l mg/l	<0,50	<0,50	<0,50	<0,50
Kw-muex	mg/l	<0,50	<0,50	<0,50	<0,50
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
47380 - 33	780130 SP			
47380 - 34	780166 SP			
47380 - 35	780167 SP			
47380 - 36	780168 SP 13.02. 9:00			
	47380 - 33	47380 - 34	47380 - 35	47380

• Untersuchungen im Wasser

LAK	μg/l "	<50	<50	<50	<50
KW-Index	mg/l	<0.50	<0,50	<0,50	<0,50
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
47380 - 37	780168 SP 13.02. 13:45	
47380 - 38	780168 SP 14.02. 7:45	
47380 - 39	780169 SP	
47380 - 40	780172 SP	
	47380 - 37 47380 - 38	47380 - 39 47380

Untersuchungen im Wasser

LAK	μg/l	<50	<50	<50	<50
KW-Index	mg/l	<0,50	<0,50	<0,50	<0,50
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	2,0	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	5,1	<0,50
o-Xylol	μg/l	<0,50	<0,50	2,7	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	6,4	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	9,8	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
47380 - 41	780173 SP	
47380 - 42	780174 SP	

47380 - 41	47380 - 42

Untersuchungen im Wasser

LAK	μg/l	<50	<50
KW-Index	mg/l	<0,50	<0,50
LHKW+VC			
1,1-Dichlorethan	μg/l	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar
AKW			
Benzol	μg/l	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50
Ethylbenzol	μg/l	1,3	<0,50
m/p-Xylol	μg/l	4,0	<0,50
o-Xylol			
	μg/l	2,4	<0,50
Styrol	µg/l µg/l	2,4 <5,0	<0,50 <5,0
Styrol Isopropylbenzol			•
	μg/l	<5,0	<5,0
Isopropylbenzol	μg/l μg/l	<5,0 <5,0	<5,0 <5,0
Isopropylbenzol Propylbenzol	μg/l μg/l μg/l	<5,0 <5,0 <5,0	<5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	ha\l ha\l ha\l	<5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	hā\ hā\ hā\ hā\	<5,0 <5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol	hā\ hā\ hā\ hā\	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan	ha\l ha\l ha\l ha\l ha\l	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden	ha\l ha\l ha\l ha\l ha\l ha\l	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0
Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin 2-Methylnaphthalin	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0

Untersuchungsmethoden

Untersuchungen im Wasser

DIN 38406 E5-1 Ammonium DIN EN ISO 10304-1 Chlorid Cyanid (ges.) DIN 38405 D7 KW-Index **DIN EN ISO 9377-2** LAK analog DIN 38407 F9 DIN EN ISO 10304-1 Nitrat DIN EN ISO 10304-1 Nitrit Phenolindex DIN 38409 H37 Sulfat DIN EN ISO 10304-1 Sulfid DIN 38405 D26 TOC **DIN EN 1484**

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

PAK nach US EPA E DIN 38407 F39

DIN EN ISO 11885 Arsen Blei DIN EN ISO 11885 Cadmium DIN EN ISO 11885 **DIN EN ISO 11885** Chrom Kupfer DIN EN ISO 11885 Nickel DIN EN ISO 11885 Quecksilber **DIN EN 1483** Zink **DIN EN ISO 11885**

Probenahmeprotokoll

Gemeinde Mönchengladbach

Analysenregister-Nr.	1	2	3	4
Datum	08.09.2014	09.09.2014	08.09.2014	08.09.2014
Uhrzeit	08:45	13:15	11:10	12:00
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780018	780054	780055	780057
Pegeldurchmesser		125	125	125
Wasserstand vorher ROK [m]	3,443	2,90	2,05	3,57
Wasserstand nachher ROK [m]	3,45	3,19	2,64	3,82
Sohle ROK [m]	15,63	11,55	12,90	11,36
Entnahmetiefe [m]	5,50	5,00	4,00	6,00
Pumpleistung [l/min]	42	20	20	15
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	1500	320	320	300
Färbung	ohne	ohne	ohne	ohne
Trübung	ohne	ohne	schwach	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	ohne	schwach arom.	ohne	ohne
pH-Wert	6,96	7,21	7,01	7,09
Leitfähigkeit [μS/cm]	473	574	601	696
Sauerstoffgehalt [mg/l]	1,0	0,6	1,3	1,4
Redox-Spannung [mV]	203	119	266	203
Temperatur [°C]	11,7	12,4	13,0	14,5
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	5	6	7	8
Datum	09.09.2014	09.09.2014	08.09.2014	08.09.2014
Uhrzeit	13:30	13:45	09:45	10:15
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780061	780110,1	780136,1	780137,1
Pegeldurchmesser	125	125	125	100
Wasserstand vorher ROK [m]	2,93	2,73	3,05	2,98
Wasserstand nachher ROK [m]	3,41	3,05	5,41	3,13
Sohle ROK [m]	5,15	11,00	5,65	10,09
Entnahmetiefe [m]	5,00	5,00	5	5,00
Pumpleistung [l/min]	6,00	20	8	8
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	100	300	100	160
Färbung	schwach grau	ohne	ohne	gelb
Trübung	stark	ohne	ohne	mittel
Bodensatz	gering	ohne	ohne	gering
Geruch	muffig	ohne	ohne	ohne
pH-Wert	6,94	7,09	7,10	7,11
Leitfähigkeit [μS/cm]	483	776	493	356
Sauerstoffgehalt [mg/l]	1,0	0,2	1,4	0,7
Redox-Spannung [mV]	198	206	199	201
Temperatur [°C]	14,2	12,4	13,0	11,8
Probenübergabe Labor				

Analysenregister-Nr.	9	10	11	12
Datum	09.09.2014	08.09.2014	09.09.2014	09.09.2014
Uhrzeit	08:30	11:35	14:10	09:30
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780170	780171	780056	780058
Pegeldurchmesser	100	100	125	125
Wasserstand vorher ROK [m]	2,97	3,59	3,43	3,36
Wasserstand nachher ROK [m]	3,17	3,71	3,75	3,47
Sohle ROK [m]	10,09	11,00	10,70	11,29
Entnahmetiefe [m]	5,20	6	5,50	5,50
Pumpleistung [l/min]	8	15	10	10
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	160	170	200	280
Färbung	ohne	ohne	schwach gelb	ohne
Trübung	ohne	ohne	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	ohne	ohne	ohne	schwach muffig
pH-Wert	7,13	7,15	7,43	7,12
Leitfähigkeit [µS/cm]	382	463	514	391
Sauerstoffgehalt [mg/l]	1,7	1,2	0,4	0,6
Redox-Spannung [mV]	271	252	199	155
Temperatur [°C]	13,0	14,0	12,2	12,8
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	13	14	15	16
Datum	08.09.2014	08.09.2014	08.09.2014	08.09.2014
Uhrzeit	13:45	14:10	13:05	12:30
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780078	780079	780100	780101
Pegeldurchmesser	50	50	125	125
Wasserstand vorher ROK [m]	2,79	2,81	3,17	3,17
Wasserstand nachher ROK [m]	4,21	3,34	3,24	3,31
Sohle ROK [m]	11,25	12,40	13,90	18,95
Entnahmetiefe [m]	5,00	5,00	5,50	4,70
Pumpleistung [l/min]	6,00	6,00	25	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	100	120	400	580
Färbung	ohne	ohne	ohne	ohne
Trübung	ohne	schwach	ohne	schwach
Bodensatz	ohne	ohne	ohne	ohne
Geruch	arom. muffig	schwach muffig	ohne	schwach arom.
pH-Wert	7,16	7,05	7,09	7,49
Leitfähigkeit [μS/cm]	612	423	599	715
Sauerstoffgehalt [mg/l]	0,5	0,7	0,9	0,8
Redox-Spannung [mV]	189	166	232	169
Temperatur [°C]	12,0	12,5	13,0	12,6
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	17	18	19	20
Datum	09.09.2014	08.09.2014	09.09.2014	09.09.2014
Uhrzeit	10:15	10:45	14:40	11:40
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780130	780166	780167	780168
Pegeldurchmesser	125	100	100	100
Wasserstand vorher ROK [m]	2,73	1,88	2,59	3,69
Wasserstand nachher ROK [m]	2,88	2,09	3,01	3,96
Sohle ROK [m]	12,35	15,72	18,95	17,20
Entnahmetiefe [m]	4,80	4,00	4,70	4,80
Pumpleistung [l/min]	15	15	15	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	350	320	380	320
Färbung	ohne	ohne	ohne	ohne
Trübung	schwach	schwach	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	arom. stechend	ohne	ohne	stark arom.
pH-Wert	7,16	6,98	7,09	7,01
Leitfähigkeit [µS/cm]	378	591	902	610
Sauerstoffgehalt [mg/l]	0,9	0,7	0,8	0,4
Redox-Spannung [mV]	189	253	241	181
Temperatur [°C]	12,1	11,6	13,0	12,0
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	21	22	23	24
Datum	09.09.2014	09.09.2014	09.09.2014	08.09.2014
Uhrzeit	12:10	12:30	12:50	14:30
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780169	780172	780173	780174
Pegeldurchmesser	100	100	100	100
Wasserstand vorher ROK [m]	4,12	4,12	4,12	4,15
Wasserstand nachher ROK [m]	4,18	4,17	4,21	3,64
Sohle ROK [m]	19,50	19,65	19,65	3,87
Entnahmetiefe [m]	6,20	6,20	6,20	13,30
Pumpleistung [l/min]	20	20	20	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	360	360	360	220
Färbung	ohne	ohne	schwach grau	ohne
Trübung	ohne	ohne	schwach	ohne
Bodensatz	ohne	ohne	gering	ohne
Geruch	schwach arom.	schwach muffig	schwach muffig	schwach Arom.
pH-Wert	7,42	7,28	7,33	7,12
Leitfähigkeit [μS/cm]	821	808	592	5121
Sauerstoffgehalt [mg/l]	0,5	0,9	0,8	0,9
Redox-Spannung [mV]	176	203	208	198
Temperatur [°C]	12,0	12,1	11,9	13,0
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	25	26	27	28
Datum				
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780056	780058	780078	780079
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [I/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
Abgepumpte Menge [L]				
Färbung	schwach gelb	ohne	schwach gelb	schwach gelb
Trübung	ohne	schwach	mittel	mittel
Bodensatz	ohne	ohne	gering	mittel
Geruch	arom.	muffig	arom.	muffig
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	29	30	31	32
Datum				
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780100	780101	780130	780166
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
Abgepumpte Menge [L]				
Färbung	ohne	schwach grau	ohne	schwach gelb
Trübung	ohne	mittel	schwach	mittel
Bodensatz	ohne	gering	ohne	gering
Geruch	ohne	schwach arom.	arom.	ohne
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

33	34	35	36
D. Gusek	D. Gusek	D. Gusek	D. Gusek
780167	780168	780169	780172
Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
ohne	ohne	ohne	ohne
ohne	ohne	ohne	ohne
ohne	ohne	ohne	ohne
ohne	stark aromatisch	arom.	schwach muffig
	D. Gusek 780167 Schöpfprobe Va-Schöpflot ohne ohne ohne	D. Gusek 780167 780168 Schöpfprobe Va-Schöpflot Ohne Ohne Ohne Ohne Ohne Ohne Ohne	D. Gusek D.

Analysenregister-Nr.	37	38		
Datum				
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780173	780174		
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
Abgepumpte Menge [L]				
Färbung	schwach grau	ohne		
Trübung	schwach	sehr schwach		
Bodensatz	ohne	ohne		
Geruch	schwach muffig	schwach arom.		
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

	1
D. Gusek	D. Gusek
Schöpfprobe	Schöpfprobe
Va-Schöpflot	Va-Schöpflot
	Schöpfprobe

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201) 847363-0 Fax (0201) 847363-332

Berichtsnummer: AU49353
Berichtsdatum: 26.09.2014

Projekt: 014.060.019 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 08.09.2014

Probeneingang: 08.09.2014

Untersuchungszeitraum: 08.09.2014 — 26.09.2014

Probenahme durch: SEWA GmbH

Untersuchungsgegenstand: 38 Wasserproben

Andreas Görner
Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
49353 - 1	780018			
49353 - 2	780054			
49353 - 3	780055			
49353 - 4	780057			
	49353 - 1 4	9353 - 2	49353 - 3	4935

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	1,9	4,2	1,3	4,0
Chlorid	mg/l	11	8,0	24	24
Sulfat	mg/l	35	74	88	100
Nitrat	mg/l	<0,10	5,0	<0,10	2,1
Nitrit	mg/l	<0,10	<0,050	<0,050	<0,050
Ammonium	mg/l	0,097	0,99	0,19	0,72
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnahi	me
49353 - 1		780018			
49353 - 2		780054			
49353 - 3		780055			
49353 - 4		780057			
			10252 2	40252 2	40252 4
		49353 - 1	49353 - 2	49353 - 3	49353 - 4
4KW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	0,11	<0,10	<0,10
-luoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	0,11	n. berechenbar	n. berechen
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen

					3
Labornummer	Ihre Prob	enbezeichnung		Probenentnah	ıme
49353 - 1		780018			
49353 - 2		780054			
49353 - 3		780055			
49353 - 4		780057			
		49353 - 1	49353 - 2	49353 - 3	49353 -
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	<
Blei	mg/l	<0,0050	<0,0050	<0,0050	<
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	<
Chrom	mg/l	<0,0050	<0,0050	<0,0050	<
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	<
Nickel	mg/l	<0,0050	<0,0050	<0,0050	<
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	<
Zink	mg/l	<0,010	0,015	<0,010	<

Labornummer	Ihre Probenbezeichnung		Probenentnahme	
49353 - 5	780061			
49353 - 6	780110,1			
49353 - 7	780136,1			
49353 - 8	780137,1			
	49353 - 5	9353 - 6	49353 - 7 4	935

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	8,9	5,4	2,0	2,0
Chlorid	mg/l	9,0	2,0	24	15
Sulfat	mg/l	16	28	100	59
Nitrat	mg/l	0,28	0,37	0,17	3,8
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	2,1	0,29	0,13	0,31
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	0,99	0,69
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	0,99	0,69

Labornummer Ihre Probenbezeichnung Probenden 49353 - 5 780061 49353 - 6 780110,1 49353 - 7 780136,1 49353 - 8 780137,1 49353 - 5 49353 - 6 49353 - 6 49353 - 7	entnahme 7 49353 - 8
49353 - 6 780110,1 49353 - 7 780136,1 49353 - 8 780137,1	7 49353 - 8
49353 - 7 780136,1 49353 - 8 780137,1	7 49353 - 8
49353 - 8 780137,1	1 49353 - 8
	7 49353 - 8
	7 49353 - 8
49535 - 3 49535 - 0 49535 - 1	49333 - 6
AKW	
Benzol μg/l 5,2 <0,50 <0,	50 <0,50
Toluol μg/l <0,50 <0,50 <0,50	50 <0,50
Ethylbenzol μg/l <0,50 <0,50 <0,50	50 <0,50
m/p-Xylol μg/l <0,50 <0,50 <0,50	50 <0,50
o-Xylol µg/l 1,0 <0,50 <0,5	50 <0,50
Styrol μg/l <5,0 <5,0 <5,	0 <5,0
$ sopropylbenzol \hspace{1cm} \mu g/l \hspace{1cm} <\!\!5,\!0 \hspace{1cm} <\!\!5,\!0 \hspace{1cm} <\!\!5,\!0$	0 <5,0
Propylbenzol μg/l <5,0 <5,0 <5,0	0 <5,0
1,3,5-Trimethylbenzol μ g/l <5,0 <5,0 <5,0	0 <5,0
1,2,4-Trimethylbenzol μ g/l <5,0 <5,0 <5,0	0 <5,0
1,2,3-Trimethylbenzol μ g/l <5,0 <5,0 <5,0	0 <5,0
Indan $\mu g/l$ <5,0 <5,0 <5,0	0 <5,0
Inden $\mu g/l$ <5,0 <5,0 <5,0	0 <5,0
1,2,3,4-Tetralin $\mu g/l$ <5,0 <5,0 <5,0	0 <5,0
2-Methylnaphthalin μ g/l <5,0 <5,0 <5,0	0 <5,0
1-Methylnaphthalin μ g/l <5,0 <5,0 <5,0	0 <5,0
Summe BTEX µg/l 6,2 n. berechenbar n. berec	henbar n. berechenbar
PAK nach US EPA	
Naphthalin $\mu g/l$ 0,19 <0,10 <0,	10 <0,10
Acenaphthylen $\mu g/l$ 0,45 <0,10 <0,	
Acenaphthen $\mu g/l$ 2,2 <0,10 <0,	
Fluoren $\mu g/l$ <0,10 <0,10 <0,10	
Phenanthren $\mu g/l$ <0,050 <0,050 <0,050	050 <0,050
Anthracen μg/l <0,050 <0,050 <0,050	050 <0,050
Fluoranthen $\mu g/l$ <0,050 <0,050 <0,050	050 <0,050
Pyren μg/l <0,050 <0,050 <0,050	050 <0,050
Benzo(a)anthracen μg/l <0,050 <0,050 <0,050	050 <0,050
Chrysen μg/l <0,050 <0,050 <0,0	050 <0,050
Benzo(b)fluoranthen μg/l <0,050 <0,050 <0,050	050 <0,050
Benzo(k)fluoranthen μ g/l <0,050 <0,050 <0,050	050 <0,050
Benzo(a)pyren μg/l <0,050 <0,050 <0,050	050 <0,050
Dibenz(ah)anthracen μg/l <0,050 <0,050 <0,050	050 <0,050
Benzo(ghi)perylen μg/l <0,050 <0,050 <0,050	050 <0,050
$Indeno(123\text{-cd})pyren \hspace{1cm} \mu g/I \hspace{1cm} <0,050 \hspace{1cm}$	050 <0,050
Summe PAK n. US EPA µg/l 2,8 n. berechenbar n. berec	henbar n. berechenbar
Summe PAK n.TrinkwV $\mu g/l$ n. berechenbar n. berechenbar n. berechenbar	henbar n. berechenbar

					3
Labornummer	Ihre Prob	enbezeichnung		Probenentnah	me
49353 - 5		780061			
49353 - 6	7	780110,1			
49353 - 7	7	780136,1			
49353 - 8	7	780137,1			
		49353 - 5	49353 - 6	49353 - 7	4935
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	0,027	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	0,014	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,34	0,016	0,016	

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
49353 - 9	780170			
49353 - 10	780171			
49353 - 11	780056			
49353 - 12	780058			
	49353 - 9	49353 - 10	49353 - 11	49353

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	3,2	3,3	16	2,6
Chlorid	mg/l	12	41	15	16
Sulfat	mg/l	130	240	82	79
Nitrat	mg/l	17	0,62	0,12	<0,10
Nitrit	mg/l	0,11	<0,050	<0,050	<0,050
Ammonium	mg/l	0,072	0,98	1,9	0,76
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	0,85	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,85	n. berechenbar	n. berechenbar	n. berechenbar

					gesellscha
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
49353 - 9		780170			
49353 - 10		780171			
49353 - 11		780056			
49353 - 12		780058			
			40252 10	40252 11	10252 12
		49353 - 9	49353 - 10	49353 - 11	49353 - 12
4KW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Γoluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
I-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,05
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,05
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche

					3
Labornummer	Ihre Prob	enbezeichnung		Probenentnah	ıme
49353 - 9		780170			
49353 - 10		780171			
49353 - 11		780056			
49353 - 12		780058			
		49353 - 9	49353 - 10	49353 - 11	4935
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,0010	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	0,010	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
49353 - 13	780078			
49353 - 14	780079			
49353 - 15	780100			
49353 - 16	780101			
	49353 - 13	49353 - 14	49353 - 15	49353

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	3,1	3,3	3,5	4,1
Chlorid	mg/l	12	18	13	15
Sulfat	mg/l	120	120	110	110
Nitrat	mg/l	<0,10	<0,10	<0,10	0,26
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,1	1,0	1,0	1,2
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	0,63	0,64	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,63	0,64	n. berechenbar	n. berechenbar

			gesellschaft m.		
Labornummer	Ihre Pro	obenbezeichnung		Probenentnah	me
49353 - 13		780078			
49353 - 14		780079			
49353 - 15		780100			
49353 - 16		780101			
17555 10			10050 11	10050 15	10050 16
		49353 - 13	49353 - 14	49353 - 15	49353 - 16
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol		<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	· -	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	· -	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenb
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US E		n. berechenbar	n. berechenbar	n. berechenbar	n. berechenb
Summe PAK n.Trinkv		n. berechenbar	n. berechenbar	n. berechenbar	n. berechenb

					3
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
49353 - 13		780078			
49353 - 14		780079			
49353 - 15		780100			
49353 - 16		780101			
		49353 - 13	49353 - 14	49353 - 15	49353
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,0010	<0,0010	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
49353 - 17	780130			
49353 - 18	780166			
49353 - 19	780167			
49353 - 20	780168			
	49353 - 17	49353 - 18	49353 - 19	4935

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	3,2	<1,0	3,9	3,3
Chlorid	mg/l	9,3	15	14	4,4
Sulfat	mg/l	77	49	100	28
Nitrat	mg/l	<0,10	<0,10	<0,10	0,26
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,96	<0,060	0,36	0,43
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft m
Labornummer	Ihre Pro	benbezeichnung		Probenentnahi	me
49353 - 17		780130			
49353 - 18		780166			
49353 - 19		780167			
49353 - 20		780168			
		49353 - 17	49353 - 18	49353 - 19	49353 - 20
		17555 17	19333 10	15555 15	19333 20
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	0,77
Toluol	μg/l	<0,50	<0,50	<0,50	0,85
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	13
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	21
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	7,7
Propylbenzol	μg/l	<5,0	<5,0	<5,0	19
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	9,1
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	72
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	13
Indan	μg/l	<5,0	<5,0	<5,0	16
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	36
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	1,9
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0.050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen		<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
·- · · ·	μg/l			<0,050 <0,050	
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	•	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	1,9
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba

					3
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
49353 - 17		780130			
49353 - 18		780166			
49353 - 19		780167			
49353 - 20		780168			
		49353 - 17	49353 - 18	49353 - 19	4935
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,0010	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentnahr	ne
49353 - 21	780169			
49353 - 22	780172			
49353 - 23	780173			
49353 - 24	780174			
	49353 - 21	49353 - 22	49353 - 23	4935

Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	5,2	5,5	4,0	2,3
Chlorid	mg/l	6,7	7,2	8,5	16
Sulfat	mg/l	48	110	92	160
Nitrat	mg/l	0,13	0,10	0,15	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,78	0,45	1,0	0,73
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft m.
Labornummer	Ihre Pro	benbezeichnung		Probenentnahi	me
49353 - 21		780169			
49353 - 22		780172			
49353 - 23		780173			
49353 - 24		780174			
		49353 - 21	49353 - 22	49353 - 23	49353 - 24
		49333 - 21	49333 - 22	49333 - 23	49333 - 24
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba

					3
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	ıme
49353 - 21		780169			
49353 - 22		780172			
49353 - 23		780173			
49353 - 24		780174			
		49353 - 21	49353 - 22	49353 - 23	49353
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,0010	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	0,014	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
49353 - 25	780056			
49353 - 26	780058			
49353 - 27	780078			
49353 - 28	780079			
	49353 - 25	49353 - 26	49353 - 27	4935

• Untersuchungen im Wasser

LAK	μg/l	<50	<50	<50	<50
KW-Index	mg/l	<0,10	<0,40	<0,10	<0,10
	9.	35,12	,	,	,
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	33	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	5,4	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	590	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	630	n. berechenbar	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
49353 - 29	780100			
49353 - 30	780101			
49353 - 31	780130			
49353 - 32	780166			
	49353 - 29	49353 - 30	49353 - 31	4935

• Untersuchungen im Wasser

LAK	μg/l	<50	<50	<50	<50
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
		,	35,32	,	,
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	1,5	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	1,5	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	1,2	<0,50	1,0
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	1,2	n. berechenbar	1,0

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
49353 - 33	780167			
49353 - 34	780168			
49353 - 35	780169			
49353 - 36	780172			
	49353 - 33	49353 - 34	49353 - 35	4935

Untersuchungen im Wasser

LAK	μg/l	<50	<50	<50	<50
KW-Index	mg/l	<0,10	0,16	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	5,4	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	5,4	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	0,95	<0,50	1,2
Ethylbenzol	μg/l	<0,50	4,0	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	24	1,3	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	6,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	25	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	5,3	<5,0	<5,0
Indan	μg/l	<5,0	5,9	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	29	1,3	1,2

Labornummer	Ihre Probenbezeichnung	Probenentnahme
49353 - 37	780173	
49353 - 38	780174	

49353 - 37	49353 - 38
49333 - 31	49333 - 30

Untersuchungen im Wasser

	,,		
LAK	μg/l	<50	<50
KW-Index	mg/l	<0,10	<0,10
LHKW+VC			
1,1-Dichlorethan	μg/l	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar
•			
Summe LHKW AKW	μg/l	n. berechenbar	n. berechenbar
Summe LHKW AKW Benzol	μg/l μg/l	n. berechenbar <0,50	n. berechenbar
Summe LHKW AKW Benzol Toluol	hâ\l hâ\l	n. berechenbar <0,50 <0,50	n. berechenbar <0,50 0,74
Summe LHKW AKW Benzol Toluol Ethylbenzol	hā\l hā\l hā\l	n. berechenbar <0,50 <0,50 <0,50	n. berechenbar <0,50 0,74 <0,50
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol	hā\l hā\l hā\l	n. berechenbar<0,50<0,50<0,50<0,50	n. berechenbar <0,50 0,74 <0,50 <0,50
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol	hā\l hā\l hā\l hā\l	n. berechenbar<0,50<0,50<0,50<0,50<0,50	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol	hâ\l hâ\l hâ\l hâ\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0	 0,50 0,74 <0,50 <0,50 <0,50 <5,0
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol	ha\l ha\l ha\l ha\l ha\l	 0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,0 	 n. berechenbar <0,50 0,74 <0,50 <0,50 <5,0 <5,0
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol	ha\l ha\l ha\l ha\l ha\l	 0,50 0,50 0,50 0,50 0,50 5,0 5,0 5,0 	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	hā\l hā\l hā\l hā\l hā\l hā\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	ha\l ha\l ha\l ha\l ha\l ha\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan	ha\l ha\l ha\l ha\l ha\l ha\l ha\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin 2-Methylnaphthalin	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <
Summe LHKW AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	n. berechenbar <0,50 <0,50 <0,50 <0,50 <0,50 <5,0 <5,	n. berechenbar <0,50 0,74 <0,50 <0,50 <0,50 <5,0 <5,0 <5,0 <5,0 <

Untersuchungsmethoden

Untersuchungen im Wasser

DIN 38406 E5-1 Ammonium DIN EN ISO 10304-1 Chlorid Cyanid (ges.) DIN 38405 D7 KW-Index **DIN EN ISO 9377-2** LAK analog DIN 38407 F9 DIN EN ISO 10304-1 Nitrat Nitrit DIN EN ISO 10304-1 Phenolindex DIN 38409 H37 Sulfat DIN EN ISO 10304-1 Sulfid DIN 38405 D26 TOC **DIN EN 1484**

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

PAK nach US EPA E DIN 38407 F39

DIN EN ISO 11885 Arsen Blei DIN EN ISO 11885 Cadmium DIN EN ISO 11885 **DIN EN ISO 11885** Chrom Kupfer DIN EN ISO 11885 Nickel DIN EN ISO 11885 Quecksilber **DIN EN 1483** Zink **DIN EN ISO 11885**

Probenahmeprotokoll

Gemeinde Mönchengladbach

Analysenregister-Nr.	1	2	3	4
Datum	24.11.2014	25.11.2014	24.11.2014	24.11.2014
Uhrzeit	08:15	08:40		
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780018	780054	780055	780057
Pegeldurchmesser		125	125	125
Wasserstand vorher ROK [m]	3,47	2,95	2,08	3,70
Wasserstand nachher ROK [m]	3,49	3,10	2,64	4,82
Sohle ROK [m]	15,63	11,55	12,90	11,36
Entnahmetiefe [m]	5,50	5,00	4,00	6,00
Pumpleistung [l/min]	42	20	20	15
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	1500	320	320	300
Färbung	ohne	ohne	ohne	ohne
Trübung	ohne	ohne	schwach	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	ohne	schwach arom.	ohne	ohne
pH-Wert	7,03	7,15	7,07	7,15
Leitfähigkeit [μS/cm]	466	567	744	621
Sauerstoffgehalt [mg/l]	1,2	0,7	1,5	1,4
Redox-Spannung [mV]	197	158	271	210
Temperatur [°C]	11,4	11,7	13,5	14,3
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	5	6	7	8
Datum	25.11.2014	25.11.2014	24.11.2014	24.11.2014
Uhrzeit			09:00	09:30
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780061	780110,1	780136,1	780137,1
Pegeldurchmesser	125	125	125	100
Wasserstand vorher ROK [m]	2,99	2,83	3,08	3,06
Wasserstand nachher ROK [m]	3,40	3,54	5,32	3,24
Sohle ROK [m]	5,15	11,00	5,65	10,09
Entnahmetiefe [m]	5,00	5,00	5	5,00
Pumpleistung [l/min]	6,00	20	8	8
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	100	300	100	160
Färbung	schwach grau	ohne	schwach grau	ohne
Trübung	stark	ohne	mittel	schwach
Bodensatz	mittel	ohne	mittel	ohne
Geruch	muffig	ohne	muffig	schwach muffig
pH-Wert	6,97	7,11	7,06	7,19
Leitfähigkeit [µS/cm]	491	691	486	338
Sauerstoffgehalt [mg/l]	1,0,0	0,3	1,5	0,9
Redox-Spannung [mV]	187	178	194	203
Temperatur [°C]	11,9	11,5	11,1	11,6
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	9	10	11	12
Datum	25.11.2014	24.11.2014	24.11.2014	24.11.2014
Uhrzeit	08:30			
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780170	780171	780056	780058
Pegeldurchmesser	100	100	125	125
Wasserstand vorher ROK [m]	3,08	3,72	3,52	3,44
Wasserstand nachher ROK [m]	3,21	3,89	3,87	3,55
Sohle ROK [m]	10,09	10,98	10,70	11,29
Entnahmetiefe [m]	5,20	6	5,50	5,50
Pumpleistung [l/min]	8	15	10	10
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	160	170	200	280
Färbung	ohne	ohne	schwach gelb	ohne
Trübung	ohne	ohne	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	ohne	schwach muffig	ohne	schwach muffig
pH-Wert	7,11	7,15	7,39	7,14
Leitfähigkeit [µS/cm]	382	466	551	432
Sauerstoffgehalt [mg/l]	1,7	1,0	0,2	0,2
Redox-Spannung [mV]	271	252	179	161
Temperatur [°C]	13,0	14,5	12,4	12,8
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	13	14	15	16
Datum	25.11.2014	25.11.2014	25.11.2014	25.11.2014
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780078	780079	780100	780101
Pegeldurchmesser	50	50	125	125
Wasserstand vorher ROK [m]	2,86	2,88	3,24	3,21
Wasserstand nachher ROK [m]	4,211	3,59	3,36	3,37
Sohle ROK [m]	11,25	12,40	13,90	18,95
Entnahmetiefe [m]	5,00	5,00	5,50	4,70
Pumpleistung [l/min]	6,00	6,00	25	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	100	120	400	580
Färbung	ohne	ohne	ohne	ohne
Trübung	ohne	ohne	ohne	schwach
Bodensatz	ohne	ohne	ohne	ohne
Geruch	arom. muffig	muffig	ohne	schwach arom.
pH-Wert	7,14	7,05	7,09	7,55
Leitfähigkeit [μS/cm]	612	423	589	438
Sauerstoffgehalt [mg/l]	0,5	0,7	0,5	0,4
Redox-Spannung [mV]	189	166	208	167
Temperatur [°C]	12,0	12,5	13,0	12,6
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	17	18	19	20
Datum	24.11.2014	24.11.2014	25.11.2014	24.11.2014
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780130	780166	780167	780168
Pegeldurchmesser	125	100	100	100
Wasserstand vorher ROK [m]	2,77	1,87	2,68	3,69
Wasserstand nachher ROK [m]	3,05	2,39	3,36	3,81
Sohle ROK [m]	12,35	15,72	18,95	17,20
Entnahmetiefe [m]	5,00	4,00	5	5,70
Pumpleistung [l/min]	15	15	15	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	350	320	380	320
Färbung	ohne	ohne	ohne	ohne
Trübung	schwach	ohne	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	arom. stechend	ohne	ohne	stark arom.
pH-Wert	7,43	6,97	6,94	7,01
Leitfähigkeit [µS/cm]	440	416	821	610
Sauerstoffgehalt [mg/l]	1,0	0,5	0,6	0,4
Redox-Spannung [mV]	166	210	210	181
Temperatur [°C]	10,9	11,5	12,7	12,0
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	21	22	23	24
Datum	24.11.2014	24.11.2014	24.11.2014	24.11.2014
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780169	780172	780173	780174
Pegeldurchmesser	100	100	100	100
Wasserstand vorher ROK [m]	4,17	4,18	4,12	3,73
Wasserstand nachher ROK [m]	4,25	4,21	4,19	3,91
Sohle ROK [m]	19,50	19,65	19,65	13,30
Entnahmetiefe [m]	6,20	6,20	6,20	5,80
Pumpleistung [l/min]	20	20	20	20
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	360	360	360	220
Färbung	ohne	ohne	grau	ohne
Trübung	ohne	ohne	mittel	ohne
Bodensatz	ohne	ohne	gering	ohne
Geruch	schwach arom.	schwach muffig	schwach Arom.	schwach Arom.
pH-Wert	7,40	7,35	7,56	7,17
Leitfähigkeit [µS/cm]	820	942	652	610
Sauerstoffgehalt [mg/l]	0,5	0,2	1,0	0,6
Redox-Spannung [mV]	176	199	186	189
Temperatur [°C]	12,4	12,4	12,2	12,3
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	25	26	27	28
Datum				
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780056	780058	780078	780079
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
Abgepumpte Menge [L]				
Färbung	schwach gelb	ohne	schwach gelb	schwach gelb
Trübung	ohne	schwach	mittel	mittel
Bodensatz	ohne	ohne	gering	mittel
Geruch	arom.	muffig	arom.	muffig
pH-Wert				
Leitfähigkeit [µS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	29	30	31	32
Datum				
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780100	780101	780130	780166
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
Abgepumpte Menge [L]				
Färbung	ohne	schwach grau	ohne	schwach gelb
Trübung	ohne	mittel	schwach	mittel
Bodensatz	ohne	gering	ohne	gering
Geruch	ohne	schwach Arom.	Arom.	ohne
pH-Wert				
Leitfähigkeit [µS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	33	34	35	36
Datum				
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780167	780168	780169	780172
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
Abgepumpte Menge [L]				
Färbung	ohne	ohne	ohne	ohne
Trübung	ohne	ohne	ohne	ohne
Bodensatz	ohne	ohne	ohne	ohne
Geruch	ohne	stark Aromatisch	Arom.	schwach muffig
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Analysenregister-Nr.	37	38		
Datum				
Uhrzeit				
Pobennehmer	D. Gusek	D. Gusek	D. Gusek	D. Gusek
Pegel-Nr.	780173	780174		
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot	Va-Schöpflot
Abgepumpte Menge [L]				
Färbung	schwach grau	ohne		
Trübung	schwach	sehr schwach		
Bodensatz	ohne	ohne		
Geruch	schwach muffig	schwach arom.		
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

D. Gusek	D. Gusek
Schöpfprobe	Schöpfprobe
Va-Schöpflot	Va-Schöpflot
	Schöpfprobe

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU50150
Berichtsdatum: 01.12.2014

Projekt: 014.060.019 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 24.11.2014

Probeneingang: 24.11.2014

Untersuchungszeitraum: 24.11.2014 — 01.12.2014

Probenahme durch: SEWA GmbH

Untersuchungsgegenstand: 38 Wasserproben

Andreas Görner

Andrews ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentnal	hme
50150 - 1	780018			
50150 - 2	780054			
50150 - 3	780055			
50150 - 4	780057			
	50150 - 1	50150 - 2	50150 - 3	5015

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	1,8	4,5	1,3	3,5
Chlorid	mg/l	11	7,3	29	31
Sulfat	mg/l	26	51	110	100
Nitrat	mg/l	<0,10	1,8	<0,10	2,4
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,11	1,3	0,19	0,63
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft m.i
Labornummer	Ihre Pro	benbezeichnung		Probenentnahı	ne
50150 - 1		780018			
50150 - 2		780054			
50150 - 3		780055			
50150 - 4		780057			
30130		50150 - 1	50150 - 2	50150 - 3	50150 - 4
		30130 - 1	30130 - 2	30130 - 3	30130 - 4
4KW					
Benzol	μg/l	<0,50	0,96	<0,50	<0,50
Toluol	μg/l	<0,50	1,4	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	2,4	n. berechenbar	n. berechenba
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	0,17	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	0,17	n. berechenbar	n. berechenba
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba

					gco
Labornummer	Ihre Prol	benbezeichnung		Probenentnal	ıme
50150 - 1		780018			
50150 - 2		780054			
50150 - 3		780055			
50150 - 4		780057			
		50150 - 1	50150 - 2	50150 - 3	5015
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	0,0075	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	0,017	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
50150 - 5	780061			
50150 - 6	780110,1			
50150 - 7	780136,1			
50150 - 8	780137,1			
	50150 - 5	50150 - 6	50150 - 7	5015

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	4,2	5,5	1,3	1,1
Chlorid	mg/l	7,3	6,5	33	22
Sulfat	mg/l	30	130	94	95
Nitrat	mg/l	1,8	0,33	0,28	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,3	0,26	0,26	0,32
Sulfid	mg/l	<0,020	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	1,1	0,87
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	1,1	0,87

					gesellschaft m.t
Labornummer	Ihre Pro	benbezeichnung		Probenentnahı	me
50150 - 5		780061			
50150 - 6		780110,1			
50150 - 7		780136,1			
50150 - 8		780137,1			
30130 0		50150 - 5	50150 - 6	50150 - 7	50150 - 8
		30130 - 3	30130 - 0	30130 - 7	30130 - 0
AKW					
Benzol	μg/l	3,9	<0,50	<0,50	<0,50
Toluol	μg/l	0,61	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	4,5	n. berechenbar	n. berechenbar	n. berechenba
PAK nach US EPA					
Naphthalin	μg/l	0,14	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	2,3	<0,10	<0,10	<0,10
Fluoren	μg/l	0,40	<0,10	<0,10	<0,10
Phenanthren	μg/l	0,69	<0,050	<0,050	<0,050
Anthracen	μg/l	0,080	<0,050	<0,050	<0,050
Fluoranthen	μg/l	0,20	<0,050	<0,050	<0,050
Pyren	μg/l	0,092	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
			,		
Summe PAK n. US EPA	μg/l	4,0	n. berechenbar	n. berechenbar	n. berechenba

					3
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
50150 - 5		780061			
50150 - 6		780110,1			
50150 - 7		780136,1			
50150 - 8		780137,1			
		50150 - 5	50150 - 6	50150 - 7	5015
Metalle					
Arsen	mg/l	<0,010	<0,010	<0.010	
Blei	mg/l	0,058	<0,0050	<0,0050	
Cadmium	mg/l	<0,0010	<0,00050	<0,00050	
Chrom	mg/l	0,0076	<0,0050	<0,0050	
Kupfer	mg/l	0,039	<0,0050	<0,0050	
Nickel	mg/l	0,0067	0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,67	0,020	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
50150 - 9	780170			
50150 - 10	780171			
50150 - 11	780056			
50150 - 12	780058			
	50150 - 9	50150 - 10	50150 - 11	5015

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	2,7	3,2	16	2,1
Chlorid	mg/l	11	35	16	15
Sulfat	mg/l	95	130	61	78
Nitrat	mg/l	14	<0,10	0,24	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,080	1,6	1,9	0,83
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	0,89	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	0,53	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	1,4	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
50150 - 9		780170			
50150 - 10		780171			
50150 - 11		780056			
50150 - 12		780058			
30130 - 12					
		50150 - 9	50150 - 10	50150 - 11	50150 - 12
4 <i>KW</i>					
Benzol	ug/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
			<0,50		<0,50
m/p-Xylol	μg/l	<0,50	•	<0,50	•
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l "	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l "	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
I,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen		<0,050	<0,050	<0,050	<0,050
	μg/l				
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l "	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche

					gco
Labornummer	Ihre Prol	penbezeichnung		Probenentna	hme
50150 - 9		780170			
50150 - 10		780171			
50150 - 11		780056			
50150 - 12		780058			
		50150 - 9	50150 - 10	50150 - 11	5015
Matalla					
Metalle		-0.040	-0.010	-0.010	
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,0010	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	0,0082	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
50150 - 13	780078			
50150 - 14	780079			
50150 - 15	780100			
50150 - 16	780101			
	50150 - 13	50150 - 14	50150 - 15	5015

Untersuchungen im Wasser

Phenolindex	mg/l	<0.0050	<0.0050	<0,0050	<0.0050
TOC	mg/l	3,1	3,6	3,2	4,0
Chlorid	=	14	19	3,2 11	18
	mg/l				
Sulfat	mg/l	120	130	120	100
Nitrat	mg/l	<0,10	<0,10	<0,10	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,1	1,0	1,1	1,3
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	1,2	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	1,2	n. berechenbar	n. berechenbar

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
50150 - 13		780078			
50150 - 14		780079			
50150 - 15		780100			
50150 - 16		780101			
30130 - 10		760101			
		50150 - 13	50150 - 14	50150 - 15	50150 - 16
4 <i>KW</i>					
3000 Benzol	ug/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
			<0,50		<0,50
m/p-Xylol	μg/l	<0,50	•	<0,50	•
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l "	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l "	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen		<0,050	<0,050	<0,050	<0,050
•	μg/l		•		
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l "	<0,050	<0,050	<0,050	<0,050
ndeno(123-cd)pyren	μg/l 	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l 	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche

					goo
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
50150 - 13		780078			
50150 - 14		780079			
50150 - 15		780100			
50150 - 16		780101			
		50150 - 13	50150 - 14	50150 - 15	50150
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,0010	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	0,012	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	0,012	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
50150 - 17	780130			
50150 - 18	780166			
50150 - 19	780167			
50150 - 20	780168			
	50150 - 17	50150 - 18	50150 - 19	5015

• Untersuchungen im Wasser

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	2,9	3,0	<1,0	2,8
Chlorid	mg/l	14	22	29	6,4
Sulfat	mg/l	120	78	170	21
Nitrat	mg/l	<0,10	<0,10	<0,10	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	1,1	0,11	0,40	0,39
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	0,28
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

					gesellscha
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
50150 - 17		780130			
50150 - 18		780166			
50150 - 19		780167			
50150 - 20		780168			
30130 - 20					
		50150 - 17	50150 - 18	50150 - 19	50150 - 20
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	5,2
Foluol	μg/l	<0,50	<0,50	<0,50	1,2
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	15
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	40
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol		<5,0	<5,0	<5,0	<5,0
	μg/l		<5,0 <5,0		<5,0 10
sopropylbenzol	μg/l	<5,0		<5,0	
Propylbenzol	μg/l	<5,0	<5,0	<5,0	22
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	5,8
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	48
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	20
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	61
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	0,95
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,05
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
luoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,05
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,05
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,05
ndeno(123-cd)pyren	μg/l	<0,050	<0,050	<0.050	<0,05
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	0,95

					gcoc
Labornummer	Ihre Pro	benbezeichnung		Probenentna	hme
50150 - 17		780130			
50150 - 18		780166			
50150 - 19		780167			
50150 - 20		780168			
		50150 - 17	50150 - 18	50150 - 19	50150
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	0,053	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
50150 - 21	780169			
50150 - 22	780172			
50150 - 23	780173			
50150 - 24	780174			
	50150 - 21	50150 - 22	50150 - 23	5015

Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
TOC	mg/l	5,1	4,6	4,1	2,2
Chlorid	mg/l	7,4	10	19	17
Sulfat	mg/l	54	140	130	170
Nitrat	mg/l	<0,10	<0,10	<0,10	<0,10
Nitrit	mg/l	<0,050	<0,050	<0,050	<0,050
Ammonium	mg/l	0,90	0,64	1,0	0,80
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
Cyanid (ges.)	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	8,7	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	8,7	n. berechenbar	n. berechenbar	n. berechenbar

					gesellschaft r
Labornummer	Ihre Pro	benbezeichnung		Probenentnah	me
50150 - 21		780169			
50150 - 22		780172			
50150 - 23		780173			
50150 - 24		780174			
30130 - 24					
		50150 - 21	50150 - 22	50150 - 23	50150 - 24
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol		<0,50	<0,50	<0,50	<0,50
	μg/l		•		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l 	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
					<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	•
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l "	<0,050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l "	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l 	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechen

					3
Labornummer	Ihre Pro	benbezeichnung		Probenentna	ıme
50150 - 21		780169			
50150 - 22		780172			
50150 - 23		780173			
50150 - 24		780174			
		50150 - 21	50150 - 22	50150 - 23	50150
Metalle .					
Arsen	mg/l	<0,010	<0,010	<0,010	
Blei	mg/l	<0,0050	<0,0050	<0,0050	
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	
Chrom	mg/l	<0,0050	<0,0050	<0,0050	
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	
Nickel	mg/l	<0,0050	<0,0050	<0,0050	
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	
Zink	mg/l	<0,010	<0,010	<0,010	

Labornummer	Ihre Probenbezeichnung	Probenentnahme
50150 - 25	780056 SP	
50150 - 26	780058 SP	
50150 - 27	780078 SP	
50150 - 28	780079 SP	
	50150 - 25 501	150 - 26 50150 - 27 5015

LAK	μg/l	<50	<50	<50	<50
KW-Index	mg/l	<0,10	1,4	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	12	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	280	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	0,60	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,60	290	n. berechenbar	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
50150 - 29	780100 SP			
50150 - 30	780101 SP			
50150 - 31	780130 SP			
50150 - 32	780166 SP			
	50150 - 29	50150 - 30	50150 - 31	50150

LAK	ua/l	<50	<50	<50	<50
KW-Index	μg/l mg/l	<0,10	<0,10	<0,10	<0,10
Kvv-ilidex	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	0,55
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	0,55

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
50150 - 33	780167 SP			
50150 - 34	780168 SP			
50150 - 35	780169 SP			
50150 - 36	780172 SP			
	50150 - 33	50150 - 34	50150 - 35	5015

LAK	μg/l	<50	98	<50	<50
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	8,9	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	8,9	n. berechenbar
AKW					
Benzol	μg/l	<0,50	6,0	<0,50	<0,50
Toluol	μg/l	0,93	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	11	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	15	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	8,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	12	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	20	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	9,6	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	0,93	32	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
50150 - 37	780173 SP	
50150 - 38	780174 SP	

LAK	μg/l	<50	<50
KW-Index	mg/l	<0,10	<0,10
LHKW+VC			
1,1-Dichlorethan	μg/l	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50
Summe LHKW	μg/l	n. berechenbar	n. berechenbar
AKW			
Benzol	μg/l	<0,50	<0,50
Toluol	μg/l	<0,50	0,60
Ethylbenzol	μg/l	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0
Indan	μg/l	<5,0	<5,0
Inden	μg/l	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	0,60

Untersuchungsmethoden

Untersuchungen im Wasser

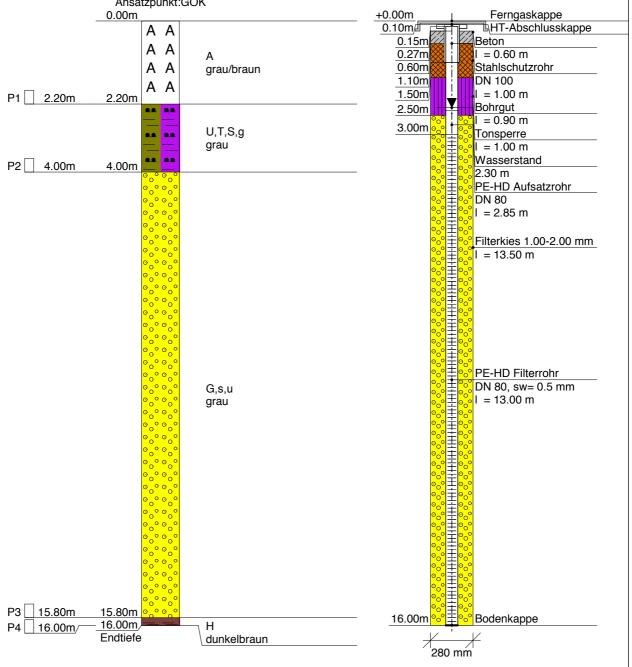
DIN 38406 E5-1 Ammonium DIN EN ISO 10304-1 Chlorid Cyanid (ges.) DIN 38405 D7 KW-Index **DIN EN ISO 9377-2** LAK analog DIN 38407 F9 DIN EN ISO 10304-1 Nitrat Nitrit DIN EN ISO 10304-1 Phenolindex DIN 38409 H37 Sulfat DIN EN ISO 10304-1 Sulfid DIN 38405 D26 TOC **DIN EN 1484**

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

PAK nach US EPA E DIN 38407 F39

DIN EN ISO 11885 Arsen Blei DIN EN ISO 11885 Cadmium DIN EN ISO 11885 **DIN EN ISO 11885** Chrom Kupfer DIN EN ISO 11885 Nickel DIN EN ISO 11885 Quecksilber **DIN EN 1483** Zink **DIN EN ISO 11885**


Anlage A 4

Bohrprofile, Schichtenverzeichnisse und Ausbaupläne der neuen Grundwassermessstellen

F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip,Lürriper Str.
Bohrunternehmen	Projektnr.: 813244
47546 Kalkar Wöhrmannstr.29-31	Anlage :
Tel.(02824) 9251-0 Fax. 925151	Maβstab : 1: 100 / 1: 25

Kopfblatt nach DIN 4022zum SchichtenverzeichnisArchiv-Nr:Anlage:für BohrungenAktenzeichen:Bericht:

Baugrundbohrung

Anzahl der Seiten des Schichtenverzeichnisses: 3

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. 780166 Zweck: Sanierungsuntersuchungen

Ort: Mönchengladbach, Lürrip

1 Objekt Mönchengladbach

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 23.07.2013 bis: 24.07.2013 Tagesbericht-Nr: Projekt-Nr: 813244

Geräteführer **Herr Kungel** Qualifikation: **Bohrgeräteführer**

Geräteführer: Qualifikation: Geräteführer: Qualifikation:

6 Bohrgerät Typ: Baujahr: Baujahr: Baujahr:

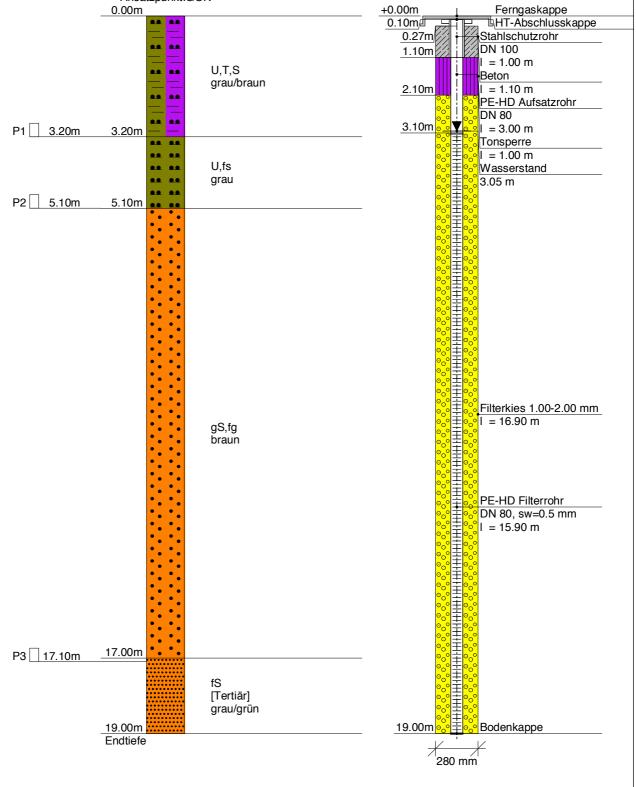
8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	5 L Eimer	4	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

9.1 9.1.1 9.1.1	Boh I.1 Ari Bohr Gew	ırzzeich rverfah ı t: rung mit	r en durchg	gehende ter Probe	r	(F BuP= E L											
	.2 Lö = drel					ram = druck =	= ram = drü					schla greif	ag = so = g	chlag reifer			
9.1.2 Bohrwerkzeug 9.1.2.1 Art: EK = Einfachkernrohr DK = Doppelkernrohr TK = Dreifachkernrohr S = Seilkernrohr						VK = H = D =	= Dia = Gre	Ikror rtmet man eifer	ne tallkrone tkrone			Schr Spi Kis Ven Mei SN	= S = K = V = N	pirale iespu	e umpe oohrer I	= = =	
9.1.2.2 Antrieb: G = Gestänge SE = Seil							= Haı = Fre = Vib	ifall				DR HY		ruckl ydra			
WS=	2.3 Sp = Was = Luft	ölhilfe: ser					= Sol = Dic = Sch					d id	= d = in	irekt Idirek	αt		
ــــا		echnisc										1					
	Tiefe ir hrlänge			nrverfahr		. 1			erkzeug	Sp	ül-	Außen	Verrol Inn) I Tief	ie	
VC		bis	Art	Lö	sen	Art	ø m	ım	Antrieb	hil	fe	ø mm	øn		m	Bei	merkungen
0,0	00	16,00	BuF	ו	rot	rot	HI	(G			280					
9.3	Bohrk	ronen						9.4	Gerätefül	rer-W	/ech	sel					
		Nr:	α Δι	ıßen/Inn	۵n·				Datu	m				Π	Na	me	
		Nr:	-	ıßen/Inn				Nr	Tag/Mo Jah	nat	Uh	rzeit	Tiefe		Geräte für	eführer , Ersatz	Grund
		Nr:		ıßen/Inn			1										
		Nr:	ø Au	ıßen/Inn	en:	/		2									
	5 I	Nr:	ø Au	ıßen/Inn	en:	/		3									
	6 I	Nr:	ø Au	ıßen/Inn	en:	/		4									
10	Angab	en übe	r Grund	dwasser	. Verfüll	una una	d Aus	bau									
	_			ffen bei		, Anstie			m ı	ınter A	∆ne≃	atzpunkt					
l			Ū	assersta			•	oei	111 (n Bohrtie	fe				
l	•			s 1.50	•	t: Bohr g			von:		m k			Art:			
			rrohr					schü	ittung				Spe	errsch	nicht		OK Peilrohr
Nr	von r	m bis	s m	ø mm	A	\rt	von		bis m	Körnı mr		von m	bis r			Art	m über/unter Ansatzpunkt
	3.0	0 1	6.00	80	Filter	kies	2.	50	16.00			0.00	0.6	0	В	eton	
												1.50	2.5	0	Ton	sperre	
11 S	Sonstiç	ge Anga							ermenge v K -> Ab						,50 Sto	I.).	
Datu	ım:			Firm	enstemp	el:			U	ntersc	hrift:	·					
					·												DC

Anlage

Bericht:

Az.:


Schichtenverzeichnis

Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.						
Bohr	rung Nr. 780166				Blatt 3	Datum: 23.07.2 24.07.2	013-	
1		2			3	4	5	6
Bis	 a) Benennung der Bode und Beimengungen 	enart	Bemerkungen	Eı	ene			
	b) Ergänzende Bemerk	ungen		Sonderproben				
m unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr	Tiefe in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Auffüllung	<u> </u>				Р	1	2.20
	b)							
2.20	c)	d)	e) grau/b	raun				
	f)	g)	h)	i)				
	a) Schluff, Ton, Sand, I	desig				Р	2	4.00
4.00	b)							
4.00	c)	d)	e) grau					
	f)	g)	h)	i)				
	a) Kies, sandig, schluff	ig				Р	3	15.80
45.00	b)							
15.80	c)	d)	e) grau					
	f)	g)	h)	i)				
	a) Torf					Р	4	16.00
40.00	b)							
16.00 Endtiefe	c)	d)	e) dunke	lbraun				
Lilutieie	f)	g)	h)	i)				
		l .	l					

F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip, Lürriper Str.
Bohrunternehmen	Projektnr.: 813244
47546 Kalkar Wöhrmannstr.29-31	Anlage :
Tel.(02824) 9251-0 Fax. 925151	Maßstab : 1: 100 / 1: 25

F.C. van Dornick GmbH Bohrunternehmen 47546 Kalkar Wöhrmannstr.29-31

Tel.(02824) 9251-0 Fax. 925151

Kopfblatt nach DIN 4022zum SchichtenverzeichnisArchiv-Nr:Anlage:für Bohrungen
BaugrundbohrungAktenzeichen:Bericht:

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses: 3

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. 780167 Zweck: Sanierungsuntersuchungen

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 29.07.2013 bis: 30.07.2013 Tagesbericht-Nr: Projekt-Nr: 813244

Geräteführer Herr Gleißner Qualifikation: Bohrgeräteführer

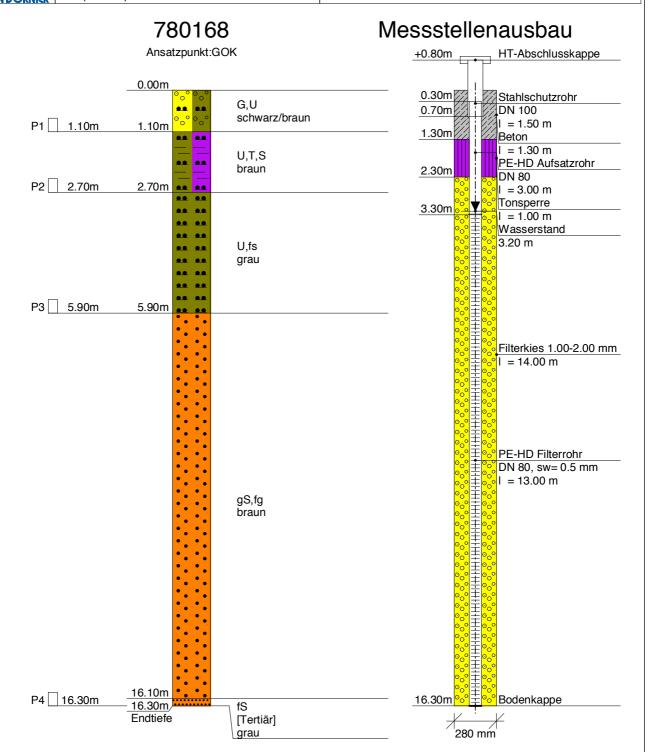
Geräteführer: Qualifikation:
Geräteführer: Qualifikation:

6 Bohrgerät Typ:Baujahr:Bohrgerät Typ:Baujahr:

8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	5 L Eimer	3	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

9.1 9.1.1 9.1.1	Bohi .1 Art Bohr Gewi	rzzeiche verfahr : ung mit		ender Proben	(BuP= I								cher			
	.2 Lö: = dreh				ram = druck =	= ran = drü	_				schla greif	ng = so = gr				
9.1.2 EK = DK = TK =	Bohi 1.1 Art Einfa Dopp Dreifs Seilk	ohr ohr	VK : H : D :	= Dia = Gre	Ilkror Irtme aman eifer	ne tallkrone itkrone			Schn Spi Kis Ven Mei SN	= So = Sp = Ki	chne oirale espu entilb eißel	cke e impe oohrer	= = =			
G =	. 2 An Gesta Seil				F :	= Ha = Fre = Vib	eifall				DR HY	= Dr = Hy				
WS=	.3 Sp : Was: : Luft	ülhilfe: ser			DS =	= So = Did = Sc	ckspü				d id	= di		t		
9.2	Bohrte	chnisch	ne Tabelle	n												
	Tiefe in		Bohrve	rfahre	en	Вс	hrwe	erkzeug			_	Verroh	_			
Bo	hrlänge n	in m bis	Art	Löse	en Art	ø n	nm	Antrieb	Spül- hilfe	- Au	ßen mm	Inne		Tief m		nerkungen
0,0	00	17,10	BuP	ro	ot rot	Н	K	G		2	280					
												_				
	Bohrk	onon					0.4	Gerätefül	ror Wo	ob ool						
9.3			4 0	. //	/		9.4	Datu		Crisei	1			Na	me	
<u> </u>		۱۲:	ø Außer				Nr	Tag/Mo	nat	Uhrzeit	7	Γiefe			eführer Ersatz	Grund
		Nr: Nr:	ø Außer ø Außer				1	Jan					1	ui	Lisaiz	
		۱r:	ø Außer				2									
		 Jr:	ø Außer		***		3									
	6 1	lr:	ø Außer	n/Inner	n: /		4									
10	Angab	en über	Grundwa	sser. \	Verfüllung und	d Aus	:bau									
	•		ngetroffen	,	m, Anstie			m	ınter An	neatzn:	akt					
l			•		m, Ansue ogleich Ansatzp	•		111 (anter Al	m Bo		ie.				
l	üllung:		m bis	ciaire	m Art:	J. 1111	201	von:	m	bis:	01		Art:			
		Filte		$\overline{}$	-	Filte	rschi	ittung					rrsch	nicht		OK Peilrohr
Nr	von n		_		Art		n m	bis m	Körnun mm	ng _{vor}	m	bis m			Art	m über/unte Ansatzpunkt
	3.10) 19		30	Filterkies	2	.10	19.00		0	.00	1.10	寸	В	eton	
											.10	2.1	-		sperre	
11 S	11 Sonstige Angaben Dei GWMST wurde mit einer Fördermenge von ca. 3,50m³/h klargepumpt (2,00 Std.). Ruhewasserspiegel = 3,05m u.GOK -> Absenkung auf 3,75m u.GOK															
Datu	ım:			Firme	enstempel:			U	nterschr	rift:						
					-								DC			

Anlage Bericht:


Az.:

Schichtenverzeichnis

Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.						
Bohi	rung Nr. 780167				Blatt 3	Datum: 29.07.2 30.07.2	013-	
1		2			3	4	5	6
Bis	 a) Benennung der Bode und Beimengungen 	enart			Bemerkungen	E	013- 013	
m unter	b) Ergänzende Bemerk	ungen	•		Sonderproben Wasserführung			Tiefe
Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	(Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			-
	a) Schluff, Ton, Sand					Р	1	3.20
	b)							
3.20	c)	d)	e) grau/b	raun				
	f)	g)	h)	i)				
	a) Schluff, feinsandig			Р	2	5.10		
5.10	b)							
5.10	c)	d)						
	f)	g)	h)	i)				
	a) Grobsand, feinkiesig]						
4= 00	b)							
17.00	c)	d)	e) braun					
	f)	g)	h)	i)				
	a) Feinsand					Р	3	17.10
	b) [Tertiär]							
19.00 Endtiefe	c)	d)	e) grau/g	ırün				
Lilaticie	f)	g)	h)	i)				

F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip, Lürriper Str.
Bohrunternehmen	Projektnr.: 813244
47546 Kalkar Wöhrmannstr.29-31	Anlage :
Tel.(02824) 9251-0 Fax. 925151	Maßstab : 1: 100 / 1: 25

Kopfblatt nach DIN 4022zum SchichtenverzeichnisArchiv-Nr:Anlage:für BohrungenAktenzeichen:Bericht:

Baugrundbohrung

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses: 3

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. 780168 Zweck: Sanierungsuntersuchungen

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 29.07.2013 bis: 29.07.2013 Tagesbericht-Nr: Projekt-Nr: 813244

Geräteführer Herr Gleißner Qualifikation: Bohrgeräteführer

Geräteführer: Qualifikation: Geräteführer: Qualifikation:

6 Bohrgerät Typ:Baujahr:Bohrgerät Typ:Baujahr:

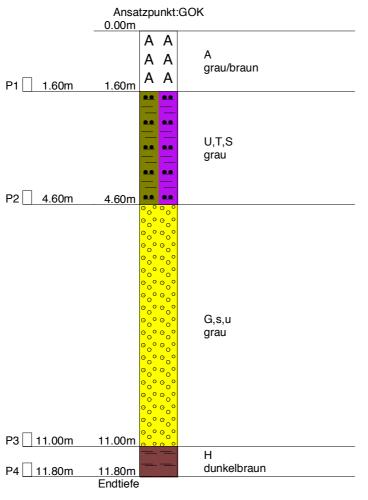
8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	5 L Eimer	4	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

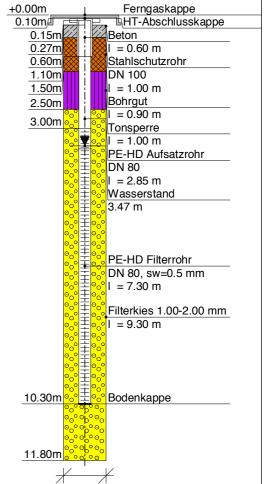
9.1 9.1.1 9.1.1	Gewir	zzeiche verfahre ing mit		ender Probe	r en	BuP= E	Gewinnung nichtgekernter Proben BuP= Bohrung mit Gewinnung unvollständiger Proben BS = Sondierbohrungen = Kernentnahme BKB= BK mit beweglic Kernumhüllung Kernumhüllung BKF= BK mit fester Ke										
	.2 Lös = dreh					ram = druck =		nmer icker				schl greit		schlag greifei			
9.1.2 Bohrwerkzeug 9.1.2.1 Art: EK = Einfachkernrohr DK = Doppelkernrohr TK = Dreifachkernrohr S = Seilkernrohr						VK = H = D =	= Vo = Ha = Dia = Gr	aman eifer	ne tallkrone itkrone			Schi Spi Kis Ven Mei SN	n = = = = =	Schne Spiral Kiespi	ecke e umpe bohrer	= =	
G =	. .2 Ant Gestä Seil		F =	= Ha = Fre = Vik	eifall				DR HY		Druck Hydra						
WS=	.3 Spü Wass Luft			DS =		le ckspü haum				d id		direkt indirel	k t				
9.2	Bohrte	chnisch	ne Tabelle	n													
	Tiefe in		Bohrve	rfahr	en		Во	hrwe	erkzeug					ohrun			
Bo	hrlänge n	in m bis	Art	Lö	sen	Art	ø n	nm	Antrieb	Sp	ül- fe	Außen ø mm		nnen mm	Tief		merkungen
0,0	00 1	16,30	BuP	ı	rot	rot	Н	K	G			280					
9.3	Bohrkr	onen		<u> </u>				9.4	Gerätefül	rer-W	/ech	sel	l			<u> </u>	
	1 N	r:	ø Auße	n/Inne	en:	/			Datu				T: - 4 -			me	0
	2 N	r:	ø Auße	n/Inne	en:	/		Nr	Tag/Monat Ul Jahr		Un	rzeit	Tiefe		Gerate für	eführer _I Ersatz	Grund
	3 N	r:	ø Auße	n/Inne	en:	/		1									
	4 N	r:	ø Auße	n/Inne	en:	1		2									
	5 N	r:	ø Auße	n/Inne	en:	/		3									
<u> </u>	6 N	r:	ø Auße	n/Inne	en:	/		4									
10	Angabe	n über	Grundwa	sser,	, Verfü	llung und	l Aus	sbau									
Was	ser erst	mals a	ngetroffen	bei		m, Anstie	g bis		m ı	unter /	Ansa	atzpunkt					
Höcl	nster ge	messe	ner Wass	erstar	nogleich	n Ansatzp	unkt	bei			m	n Bohrtie	fe				
Verf	üllung:		m bis		m ,	Art:			von:		m k	ois:	n	n Art:			
		Filte		<u>, </u>					ittung	Körn	una		. S _l	perrscl	hicht		OK Peilrohr n über/unte
Nr	von m	bis	m m	m		Art	vor	n m	bis m	mr		von m	bis	m		Art	Ansatzpunkt
	3.30	16	5.30	80	Filt	erkies	2	2.30	16.30			0.00	1	.30		eton	
												1.30	2	.30	Ton	sperre	++
			l						<u> </u>	<u> </u>			<u> </u>				
11 S	Sonstige	e Angal							ermenge v K -> Ab						,00 Sto	1.).	
Datu	ım:			Firm	ensten	npel:			U	ntersc	hrift:	:					
														DC			

Anlage Bericht:

Az.:

Schichtenverzeichnis


Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.								
Bohi	rung Nr. 780168				Blatt 3	Datum 29.07.2 29.07.2	2013-			
1		2			3	4	5	6		
Bis	a) Benennung der Bode und Beimengungen	enart			Bemerkungen	Entnommene Proben				
m	b) Ergänzende Bemerk	ungen		Sonderproben Wasserführung			Tiefe			
unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-		
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)		
	a) Kies, Schluff					P	1	1.10		
4.40	b)									
1.10	c)	d)	e) schwa	rz/braun						
	f)	g)	h)	i)						
	a) Schluff, Ton, Sand					Р	2	2.70		
2.70	b)									
	c)	d)	e) braun							
	f)	g)	h)	i)						
	a) Schluff, feinsandig			Р	3	5.90				
	b)									
5.90	c)	d)								
	f)	g)	h)	i)						
	a) Grobsand, feinkiesiç]	ı	l						
	b)									
16.10	c)	d)	e) braun							
	f)	g)	h)	i)						
	a) Feinsand		1			Р	4	16.30		
	b) [Tertiär]									
16.30 Endtiefe	c)	d)								
Enatiere	f)	g)	h)	i)						



F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip,Lürriper Str.
Bohrunternehmen	Projektnr.: 813244
47546 Kalkar Wöhrmannstr.29-31	Anlage :
Tel.(02824) 9251-0 Fax. 925151	Maβstab : 1: 100 / 1: 25

780170

Messstellenausbau

F.C. van Dornick GmbH Bohrunternehmen 47546 Kalkar Wöhrmannstr.29-31

4/546 Kalkar Wohrmannstr.29-31 Tel.(02824) 9251-0 Fax. 925151

Kopfblatt nach DIN 4022zum SchichtenverzeichnisArchiv-Nr:Anlage:für Bohrungen
BaugrundbohrungAktenzeichen:Bericht:

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses: 3

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. **780170** Zweck: **Sanierungsuntersuchungen**

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 26.07.2013 bis: 26.07.2013 Tagesbericht-Nr: Projekt-Nr: 813244

Geräteführer **Herr Kungel** Qualifikation: **Bohrgeräteführer**

Geräteführer: Qualifikation: Geräteführer: Qualifikation:

6 Bohrgerät Typ:Baujahr:Bohrgerät Typ:Baujahr:

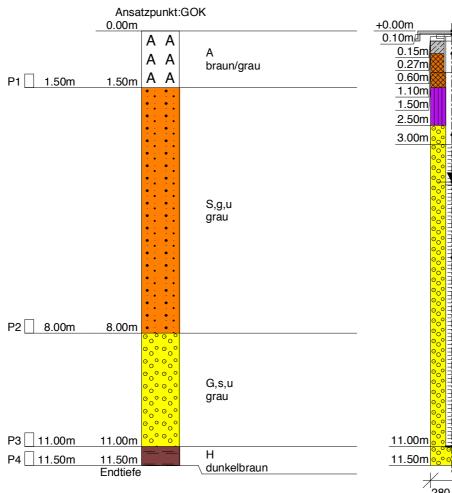
8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	5 L Eimer	4	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

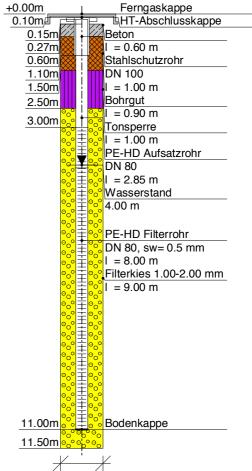
9.1 9.1.1 9.1.1	Gewini	zeichen erfahren ng mit du			BuP= I	Gewinnun Proben Bohrung r	mit durchg g nichtgek mit Gewinr idiger Prob bhrungen	ernter lung	BKB	Kerne = BK mi Kernu = BK mi	ntnahme t bewegl mhüllung	icher	
	.2 Löse = drehe					am = rammend schlag = schlagend ruck = drückend greif = greifend							
9.1.2 EK = DK = TK =	Bohrw 1.1 Art: Einfacl Doppe Dreifac Seilker	nkernroh Ikernroh hkernro	nr r		VK = H = D = Gr =	= Hohlkro = Vollkro = Hartme = Diamar = Greifer = Schapp	ne etallkrone ntkrone		Schr Spi Kis Ven Mei SN	= Spi = Kie	spumpe ntilbohrei ißel	= = =	
G =	2 .2 Antri : Gestär : Seil				F =	= Hand = Freifall = Vibro			DR HY	= Dru = Hyd	ıckluft draulik		
WS=	.3 Spül Wasse Luft	hilfe: r				= Sole = Dicksp = Schaur			d id	= dire = ind			
9.2	Bohrtec	hnische	Tabellen		_								
	Tiefe in r hrlänge i		Bohrver				erkzeug '	Spül-	Außen	Verrohr Inner		ofo	
VC		ois	Art	Lösen	Art	ø mm	Antrieb	hilfe	ø mm	ø mn		n Ber	nerkungen
0,0	00 1	1,80	BuP	rot	rot	HK	G		280				
9.3	Bohrkro	nen			'	9.4	Gerätefül	rer-Wech	sel			'	
	1 Nr		ø Außen/	Innen:	/	Nie	Datu		aracit .	Tiofo		ame	Crund
	2 Nr	•	ø Außen/	Innen:	1	Nr Nr	Tag/Mo Jah	r or	nrzeit	Tiefe	für	teführer Ersatz	Grund
	3 Nr	:	ø Außen/	Innen:	1	1							
	4 Nr		ø Außen/	Innen:	1	2						-	
	5 Nr		ø Außen/			3							
	6 Nr		ø Außen/	Innen:	/	4							
10	Angaber	über G	irundwas	ser, Ver	füllung und	d Ausbau							
Was	ser erstn	nals ang	jetroffen b	oei	m, Anstie	g bis	m ı	unter Ansa	atzpunkt				
l	•			•	ich Ansatzp			m	n Bohrtie	fe			
Verf	üllung: (n bis 1	.50 m	Art: Bohr ç		von:	m l	bis:	m A			
NI	\/CD ==	Filterro	~		Λ ⊶	Filtersch	. •	Körnung	von ==		schicht	Λ r+	OK Peilrohr m über/unter
Nr	von m	bis m	' mr		Art	von m	bis m	mm	von m	bis m	_	Art	Ansatzpunkt
	3.00	10.3	0 8) F	ilterkies	2.50	11.80		0.00	0.60		Beton	+
		1							1.50	2.50	10	nsperre	
11 S	Sonstige	Angabe			wurde mit e spiegel = 3,4						t (1,50 St	d.).	
Datu	ım:		F	irmenst	empel:		U	nterschrift	:				

Anlage Bericht:

Az.:

Schichtenverzeichnis


Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.				-		
Bohi	rung Nr. 780170				Blatt 3	Datum: 26.07.2 26.07.2	013-	
1		2			3	4	5	6
Bis	 a) Benennung der Bode und Beimengungen 	enart		Bemerkungen	Eı	ene		
	b) Ergänzende Bemerk	ungen	Sonderproben		Nr	Tiefe in m (Unter-		
m unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	Wasserführung Bohrwerkzeuge Kernverlust	Art				
punkt	f) Übliche Benennung	g) Geologische Benennung	Sonstiges			kante)		
	a) Auffüllung		•			Р	1	1.60
	b)							
1.60	c)	d)	e) grau/b	raun				
	,	,	, 3					
	f)	g)	h)	i)				
	a) Schluff, Ton, Sand			Р	2	4.60		
	b)							
4.60	c)	d)						
	f)	g)	h)	i)				
	a) Kies, sandig, schluff	ig				Р	3	11.00
	b)							
11.00	c)	d)	e) grau					
	f)	g)	h)	i)				
	a) Torf		l	1		Р	4	11.80
	b)							
11.80	c)	d)	Ibraun					
Endtiefe	f)	g)	h)	i)				



F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip,Lürriper Str.
Bohrunternehmen	Projektnr.: 813244
47546 Kalkar Wöhrmannstr.29-31	Anlage :
Tel.(02824) 9251-0 Fax. 925151	Maßstab : 1: 100 / 1: 25

780171

Messstellenausbau

F.C. van Dornick GmbH Bohrunternehmen 47546 Kalkar Wöhrmannstr.29-31

Tel.(02824) 9251-0 Fax. 925151

Kopfblatt nach DIN 4022 zum Schichtenverzeichnis Archiv-Nr: Anlage: für Bohrungen Aktenzeichen: Bericht: Baugrundbohrung

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses:

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. 780171 Zweck: Sanierungsuntersuchungen

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr: Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes m gleich Gelände b) zu

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 24.07.2013 bis: 24.07.2013 Tagesbericht-Nr: Projekt-Nr: 813244

Qualifikation: Bohrgeräteführer Geräteführer Herr Kungel

Geräteführer: Qualifikation: Geräteführer: Qualifikation:

6 Bohrgerät Typ: Baujahr: Bohrgerät Typ: Baujahr:

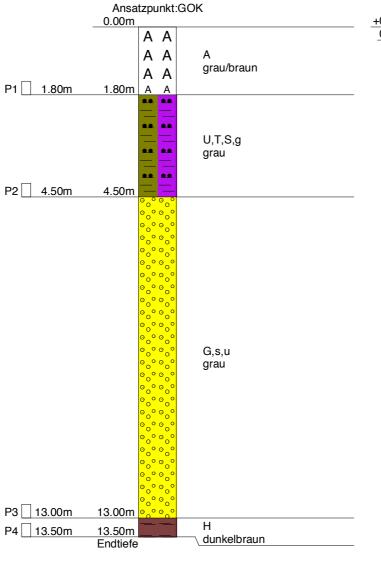
8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	5 L Eimer	4	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

9.1 9.1.1 9.1.1	Gewin	zzeiche verfahre ng mit				(F BuP= E	Gewir Probe Bohru Involl	nung n ng m stän	nit durchge g nichtgek nit Gewinr diger Prob hrungen	ernter iung		ВКВ	Kerr = BK r Kerr = BK r	nentn mit be numh	ahme ewegli üllung	sorientiert cher ernumhülli	
	.2 Löse = drehe						am = rammend schlag = schlagend ruck = drückend greif = greifend										
9.1.2 EK = DK = TK =	P. Bohrv 2.1 Art: Einfac Doppe Dreifa Seilke	ohr ohr	HK = Hohlkrone VK = Vollkrone H = Hartmetallkrone D = Diamantkrone Gr = Greifer Schap = Schappe						Schr Spi Kis Ven Mei SN	= S = K = V = N	pirale iespu	e umpe oohrer I	= = =				
G =	2. 2 Antr Gestä Seil					F =	= Ha = Fre = Vib	ifall				DR HY		ruckl ydra			
WS=	2.3 Spü : Wass : Luft	lhilfe: er					= Sol = Dic = Sch					d id	= d = ir	irekt Idirek	αt		
——ا			ne Tabell														
	Tiefe in hrlänge		Bohrv	1		. 1			erkzeug	Spi	ül-	Außen	Verrol) I Tief	ie	
VC		bis	Art	Lö	sen	Art	øm	ım	Antrieb	hili	fe	ø mm	øn		m	Ber	nerkungen
0,0	00 1	1,50	BuP		rot	rot	Н	K	G			280					
				+													
9.3	Bohrkro	onen		_	<u> </u>			9.4	Gerätefül	rer-W	ech:	sel	1			l .	
	1 N	r:	ø Auße	en/Inn	en:	/			Datu				T: - f -			me	0
	2 N	r:	ø Auße	en/Inn	en:	/		Nr	Tag/Mo Jahi	nat	Un	rzeit	Tiefe		Gerate für	eführer _I Ersatz	Grund
	3 N	r:	ø Auße	en/Inn	en:	1		1									
	4 N	r:	ø Auße	en/Inn	en:	1		2									
	5 N	r:	ø Auße	en/Inn	en:	/		3						1			
	6 N	r:	ø Auße	en/Inn	en:	/		4									
10	Angabe	n über	Grundw	asser	, Verfü	llung und	d Aus	bau									
Was	ser erst	mals a	ngetroffe	n bei		m, Anstie	g bis		m ı	ınter A	Ansa	atzpunkt					
Höcl	nster ge	messe	ner Wass	sersta	nogleich	n Ansatzp	unkt l	oei			m	n Bohrtie	fe				
Verf	üllung:	0.60	m bis	1.50	m	Art: Bohr ç	gut		von:		m k	bis:	m	Art:			
		Filte		ø					ittung	ı Körnı	ına			errsch		_	OK Peilrohr m über/unter
Nr	von m	bis	m n	nm		Art	von	m	bis m	mn		von m	bis r	n		Art	Ansatzpunkt
	3.00	11	.00	80	Filt	erkies	2.	.50	11.50			0.00	0.6	-		eton	
												1.50	2.5	0	Ton	sperre	
									<u> </u>	<u> </u>							
11 S	Sonstige	e Angal							ermenge v K -> Ab						,50 Sto	I.).	
Datu	ım:			Firm	ensten	npel:			U	nterscl	hrift:	:					
						•	_						DC				
L																	ت ــــــــــــــــــــــــــــــــــــ

Anlage Bericht:

Az.:

Schichtenverzeichnis


Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.						
Bohi	rung Nr. 780171				Blatt 3	Datum: 24.07.2 24.07.2	013-	
1		2			3	4	5	6
Bis	 a) Benennung der Bode und Beimengungen 			Bemerkungen	E	ntnomme Proben		
m	b) Ergänzende Bemerk	zungen	Sonderproben Wasserführung			Tiefe		
unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Auffüllung					Р	1	1.50
	b)							
1.50	c)	d)	e) braun	/grau				
	f)	g)	h)	i)				
	a) Sand, kiesig, schluff	iig		Р	2	8.00		
0.00	b)							
8.00	c)	d)						
	f)	g)	h)	i)				
	a) Kies, sandig, schluff	fig				Р	3	11.00
	b)							
11.00	c)	d)	e) grau					
	f)	g)	h)	i)				
	a) Torf	1	I	1		Р	4	11.50
	b)							
11.50	c)	d)	e) dunke	lbraun				
Endtiefe	f)	g)	h)	i)				



F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip,Lürriper Str.
Bohrunternehmen	Projektnr.: 813244
47546 Kalkar Wöhrmannstr.29-31	Anlage :
Tel.(02824) 9251-0 Fax. 925151	Maßstab : 1: 100 / 1: 25

780174

Messstellenausbau

F.C. van Dornick GmbH Bohrunternehmen 47546 Kalkar Wöhrmannstr.29-31

Tel.(02824) 9251-0 Fax. 925151

Kopfblatt nach DIN 4022zum SchichtenverzeichnisArchiv-Nr:Anlage:für Bohrungen
BaugrundbohrungAktenzeichen:Bericht:

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses: 3

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. 780174 Zweck: Sanierungsuntersuchungen

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: **25.07.2013** bis: **25.07.2013** Tagesbericht-Nr: Projekt-Nr: **813244**

Geräteführer Herr Kungel Qualifikation: Bohrgeräteführer

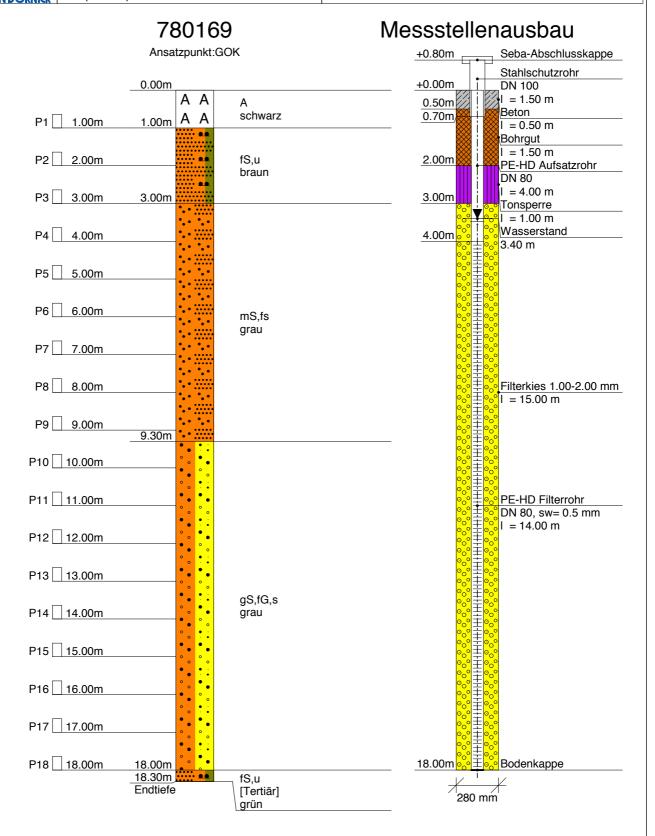
Geräteführer: Qualifikation: Geräteführer: Qualifikation:

6 Bohrgerät Typ:Baujahr:Bohrgerät Typ:Baujahr:

8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	5 L Eimer	4	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

9.1 9.1.1 9.1.1	Gewinr	zeichei erfahre				(F BuP= E	Gewir Probe Bohru Involl	nnung en ing m Istän	nit durchge g nichtgek nit Gewinr diger Prob hrungen	ernter iung		ВКВ	Kerr = BK r Kerr = BK r	nentn mit be numh	ahme ewegli üllung	sorientiert cher ernumhülli	
	.2 Löse = drehe						am = rammend schlag = schlagend ruck = drückend greif = greifend										
9.1.2 EK = DK = TK =	Bohrw 1 Art: Einfach Doppel Dreifac Seilker	HK = Hohlkrone VK = Vollkrone H = Hartmetallkrone D = Diamantkrone Gr = Greifer Schap = Schappe						Schr Spi Kis Ven Mei SN	= S = K = V = N	pirale iespu	e umpe oohrer I	= = =					
G =	. .2 Antri Gestän Seil			F =	= Ha = Fre = Vib	eifall				DR HY		ruckl ydra					
WS=	.3 Spüll Wasse Luft	hilfe: r					= Sol = Dic = Scl					d id	= d = in	irekt Idirek	αt		
I——			e Tabelle									,					
	Tiefe in n hrlänge i	I .	Bohrve	ı		. 1			erkzeug	Spi	nı.	Außen	Verrol Inn) I Tief	ia	
VC		ois	Art	Lö	sen	Art	ø m	nm	Antrieb	hili	fe	ø mm	øn		m	Ber	nerkungen
0,0	00 13	3,50	BuP	<u> </u>	rot	rot	H	K	G			280					
9.3	Bohrkro	nen						9.4	Gerätefül	rer-W	ech:	sel	<u>'</u>			'	
	1 Nr:	:	ø Außei	n/Inne	en:	/		Nı	Datu		LII	rzoit .	Tiofo			me	Crund
	2 Nr:		ø Außei	n/Inne	en:	1		Nr	Tag/Mo Jahi	mai	Un	rzeit	Tiefe		für	eführer _I Ersatz	Grund
	3 Nr	:	ø Außei	n/Inne	en:	1		1									
	4 Nr:		ø Außei	n/Inne	en:	/		2									
	5 Nr:		ø Außei			/		3						-			
	6 Nr:		ø Außei	n/Inne	en:	/		4									
10	Angaben	über (Grundwa	sser	, Verfül	llung und	l Aus	bau									
Was	ser erstn	nals an	getroffen	bei	1	m, Anstie	g bis		mι	unter A	Ansa	atzpunkt					
l	•				•	Ansatzp		bei			m	n Bohrtie	fe				
Verf	üllung: 0		m bis	1.50	m /	Art: Bohr ç			von:	l	m k	bis:		Art:			
NI	V00	Filterr)		Λ r+			ittung I bio m	ı Körnı	ına	V00		errsch		A rt	OK Peilrohr m über/unter
Nr	von m	bis	''' m	m		Art		1 m	bis m	mn		von m	bis r	\dashv		Art	Ansatzpunkt
	3.00	13.	40	80	Filte	erkies	2	.50	13.50			0.00	0.6	-		eton	\vdash
$\ - \ $												1.50	2.5	0	ıon	sperre	+
		1	Í									I .					
11 S	Sonstige	Angab							ermenge v K -> Ab						,50 Std	I.).	
Det				F:	onat	anal:				ntc=	hr:£1						
Datu	im:			Firm	enster	npel:			U	ntersc	nrift:	:					
																	DC

Anlage
Bericht:


Az.:

Schichtenverzeichnis

Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.							
Bohi	rung Nr. 780174				Blatt 3	Datum: 25.07.2 25.07.2	013-		
1		2	3	4	5	6			
Bis	a) Benennung der Bode und Beimengungen		Bemerkungen Entnommene Proben						
m	b) Ergänzende Bemerk	-	Sonderproben Wasserführung			Tiefe			
unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-	
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonsilges			kante)	
	a) Auffüllung					P	1	1.80	
	b)								
1.80	c)	d)	e) grau/b	raun		3 4 5 Entnommene Proben erproben erführung erkzeuge nverlust instiges P 1 P 2 P 3 1			
	f)	g)	h)	i)					
	a) Schluff, Ton, Sand, I	kiesig		Р	2	4.50			
4.50	b)								
4.50	c)	d)	e) grau						
	f)	g)	h)	i)					
	a) Kies, sandig, schluff	fig		Р	3	13.00			
10.00	b)								
13.00	c)	d)	e) grau						
	f)	g)	h)	i)					
13.50 Endtiefe	a) Torf			Р	4	13.50			
	b)								
	c)	d)	e) dunke	lbraun					
	f)	g)	h)	i)					

F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip,Lürriper Str.
Wöhrmannstraße 29-31	Projektnr.: 813244
47546 Kalkar	Anlage :
Tel.(02824) 9251-0 Fax. 925151	Maβstab : 1: 100 / 1: 25

F.C. van Dornick GmbH Wöhrmannstraße 29-31 47546 Kalkar

Tel.(02824) 9251-0 Fax. 925151

Kopfblatt nach DIN 4022	zum Schichtenverzeichnis	Archiv-Nr:	Anlage:
für Bohrungen Baugrundbohrung		Aktenzeichen:	Bericht:

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses: 3

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. 780169 Zweck: Sanierungsuntersuchungen

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 13.02.2014 bis: 13.02.2014 Tagesbericht-Nr: Projekt-Nr: 813244

Geräteführer **Herr Kungel** Qualifikation: **Bohrgeräteführer**

Geräteführer: Qualifikation: Geräteführer: Qualifikation:

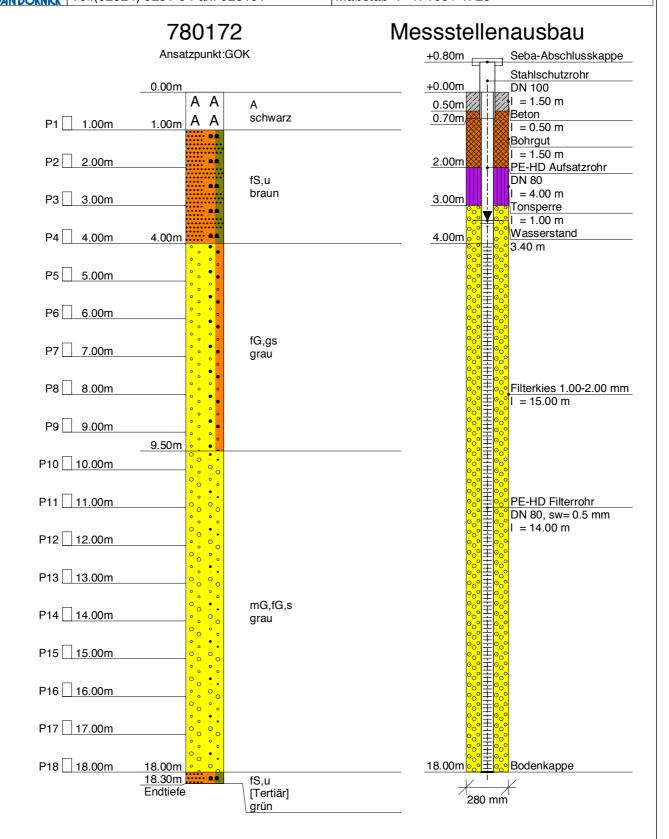
6 Bohrgerät Typ:Baujahr:Bohrgerät Typ:Baujahr:

8 Probenübersicht:		Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	1 Liter Gläser	18	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

9.1 9.1.1 9.1.1		zeiche erfahre	n		(F BuP= E	BP = Bohrung mit durchgehender Gewinnung nichtgekernter Proben BuP= Bohrung mit Gewinnung unvollständiger Proben BS = Sondierbohrungen = BKR= BK mit richtungsorientierter Kernentnahme BK = BK mit beweglicher Kernumhüllung BKF= BK mit fester Kernumhüllung =											
9.1.1.2 Lösen: ram = ramme rot = druck = drücker												schla greif	ag = s = g	chlag reifer			
9.1.2 Bohrwerkzeug 9.1.2.1 Art: EK = Einfachkernrohr DK = Doppelkernrohr TK = Dreifachkernrohr					HK = Hohlkrone VK = Vollkrone H = Hartmetallkrone D = Diamantkrone Gr = Greifer Schap = Schappe					Schr Spi Kis Ven Mei SN	n = Schnecke = = Spirale = = Kiespumpe = n = Ventilbohrer						
G =	2. 2 Antri : Gestär : Seil					F =	= Ha = Fre = Vib	eifall				DR = Druckluft HY = Hydraulik					
WS=	.3 Spüll Wasse Luft	hilfe: r					= Sol = Dic = Scl					d id		irekt ndirek	ct		
9.2	Bohrtec	nnisch	e Tabelle	n													
	Tiefe in n		Bohrve	erfahr	en	ı	Во	hrwe	erkzeug	ı Çn	ΔI	Außen	Verrol) Tiet	fo	
VC	hrlänge i n k	ois	Art	Lö	sen	Art	øm	nm	Antrieb	Spül- hilfe		ø mm	øn		m	Ber	merkungen
0,0	00 18	3,00	BuP		rot	rot	Н	K	G			280					
9.3	Bohrkro	nen						9.4	Gerätefül	rer-W	/ech	sel				<u> </u>	
	1 Nr		ø Auße	n/Inn	en:	/		Γ	_ Datu				- : ,			me	
	2 Nr	-	ø Auße	n/Inn	en:	/	/ Nr		Tag/Monat Ul Jahr		Un	nrzeit Tiefe			Gerate für	eführer _I Ersatz	Grund
	3 Nr		ø Auße	n/Inn	en:	1	1										
	4 Nr	:	ø Auße	n/Inn	en:	1		2									
	5 Nr	:	ø Auße	n/Inn	en:	1		3									
	6 Nr	:	ø Auße	n/Inn	en:			4									
10	Angaben	über	Grundwa	asser	, Verfü	llung und	l Aus	bau									
Was	ser erstn	nals an	getroffer	bei		m, Anstie	g bis		mι	unter A	Ansa	atzpunkt					
Höchster gemessener Wasserstandgleich Ansa						n Ansatzp	nsatzpunkt bei m Bohrtiefe										
Verfüllung: 0.50 m bis 2.00 m A					Art: Bohr ç	gut		von:		m k	bis:	m	Art:				
		Filter		21		Filterschü		. •	Körnung		Sperrsch				OK Peilrohr m über/unter		
Nr	von m bis m Ø Art vor		von	m	bis m	bis m Körnung mm		von m bis r		m Art		Art	Ansatzpunkt				
	4.00	18.	00	80	Filt	erkies	3.00		18.00			0.00			Beton		
		1-										2.00	3.0	3.00 Tonsp		sperre	
		1							<u> </u>								
11 S	11 Sonstige Angaben Dei GWMST wurde mit einer Fördermenge von ca. 1,50m³/h klargepumpt (2,00 Std.).																
Datu	ım:			Firm	ensten	npel:			U	ntersc	hrift:	:					
																	DC

F.C. van Dornick GmbH Wöhrmannstraße 29-31 47546 Kalkar Tel.(02824) 9251-0 Fax. 925151 Anlage Bericht:

Az.:


Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.						
Bohi	rung Nr. 780169				Blatt 3	Datum: 13.02.2 13.02.2	014-	
1		2			3	4	5	6
Bis	a) Benennung der Bode und Beimengungen b) Frankensende Berendelte.				Bemerkungen	E	ntnomme Proben	
m	b) Ergänzende Bemerk	ungen			Sonderproben Wasserführung			Tiefe
unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Auffüllung			Р	1	1.00		
	b)							
1.00	c)	d)	e) schwa	ırz				
	f)	g)	h)	i)				
3.00	a) Feinsand, schluffig			P P	2 3	2.00 3.00		
	b)							
3.00	c)	d)	e) braun					
	f)	g)	h)	i)				
	a) Mittelsand, feinsand	ig		P P P	4 5 6	4.00 5.00 6.00		
9.30	b)					P P	7 8	7.00 8.00
	c)	d)	e) grau			P	9	9.00
	f)	g)	h)	i)				
	a) Grobsand, Feinkies,	sandig				P P	10 11	10.00 11.00
18.00	b)					P P P	12 13 14	12.00 13.00 14.00
10.00	c)	d)	e) grau			P P P	15 16 17	15.00 16.00 17.00
	f)	g)	h)	i)		P	18	18.00
	a) Feinsand, schluffig							
18.30	b) [Tertiär]							
Endtiefe	c)	d)	e) grün					
	f)	g)	h)	i)				

	F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip,Lürriper Str.
	Wöhrmannstraße 29-31	Projektnr.: 813244
	47546 Kalkar	Anlage :
,	Tel.(02824) 9251-0 Fax. 925151	Maβstab : 1: 100 / 1: 25

F.C. van Dornick GmbH Wöhrmannstraße 29-31 47546 Kalkar

Tel.(02824) 9251-0 Fax. 925151

Kopfblatt nach DIN 4022	zum Schichtenverzeichnis	Archiv-Nr:	Anlage:
für Bohrungen Baugrundbohrung		Aktenzeichen:	Bericht:

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses: 3

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. **780172** Zweck: **Sanierungsuntersuchungen**

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 12.02.2014 bis: 13.02.2014 Tagesbericht-Nr: Projekt-Nr: 813244

Geräteführer **Herr Kungel** Qualifikation: **Bohrgeräteführer** Geräteführer: Qualifikation:

Geräteführer: Qualifikation:
Geräteführer: Qualifikation:

6 Bohrgerät Typ:Baujahr:Bohrgerät Typ:Baujahr:

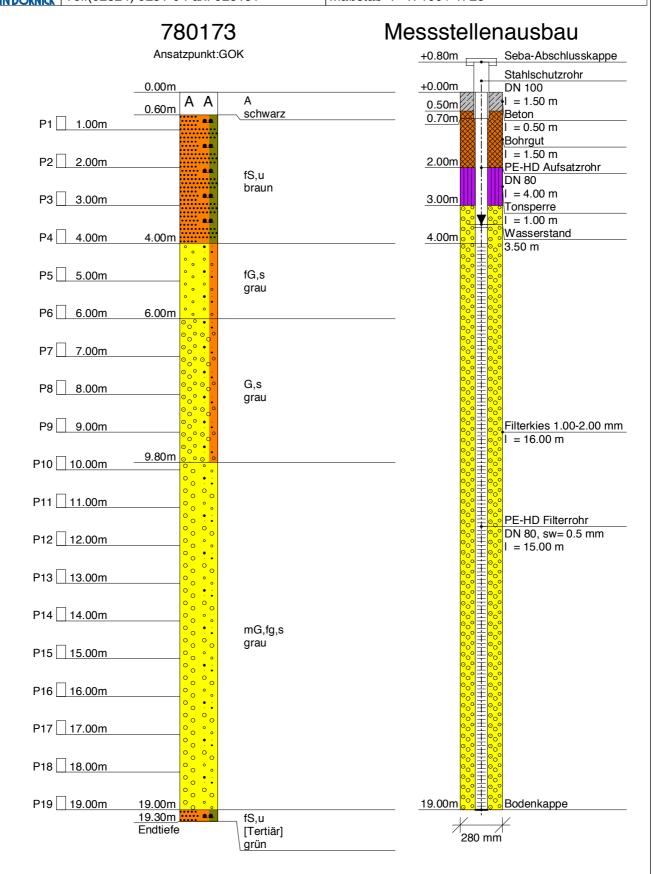
7 Messungen und Tests im Bohrloch:

8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	1 Liter Gläser	18	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

9 Bohrtechnik 9.1 9.1 Kurzzeichen 9.1.1 Bohrverfahren 9.1.1.1 Art: BK = Bohrung mit durchgehender Gewinnung gekernter Proben =					(F BuP= E	BR = Bohrung mit durchgehender Gewinnung nichtgekernter Proben BuP= Bohrung mit Gewinnung unvollständiger Proben BS = Sondierbohrungen = BKR= BK mit richtungsorientierte Kernentnahme BKB= BK mit beweglicher Kernumhüllung BKF= BK mit fester Kernumhüllu											
	.2 Löse = drehe					ram = druck =	ran drü					schla greif	ag = s = g	chlag reifer			
9.1.2 Bohrwerkzeug 9.1.2.1 Art: EK = Einfachkernrohr DK = Doppelkernrohr TK = Dreifachkernrohr S = Seilkernrohr				VK = H = D =	= Dia = Gre	llkror rtme aman eifer	ne tallkrone tkrone			Schr Spi Kis Ven Mei SN	= S = K = V = N		e umpe oohrer I	= =			
G =	2. 2 Antri : Gestär : Seil					F =	= Ha = Fre = Vib	eifall				DR HY		ruckl Iydra			
WS=	.3 Spüll Wasse Luft	hilfe: r					= Sol = Dic = Scl					d id		irekt ndirek	ct		
9.2	Bohrtec	nnisch	e Tabelle	n													
	Tiefe in n		Bohrve	erfahr	en	ı	Во	hrwe	erkzeug	ı Çn	ΔI	Außen	Verrol) Tiet	fo	
VC	hrlänge i n k	ois	Art	Lö	sen	Art	øm	nm	Antrieb	Sp hil	te	ø mm	øn		m	Ber	merkungen
0,0	00 18	3,00	BuP		rot	rot	Н	K	G			280					
9.3	Bohrkro	nen						9.4	Gerätefül	rer-W	/ech	sel				<u> </u>	
	1 Nr		ø Auße	n/Inn	en:	/		Γ	_ Datu				- : ,			me	
	2 Nr	-	ø Auße	n/Inn	en:	/		Nr	Tag/Mo Jahi	nat	Un	rzeit	Tiefe		Gerate für	eführer _I Ersatz	Grund
	3 Nr		ø Auße	n/Inn	en:	1		1									
	4 Nr	:	ø Auße	n/Inn	en:	1		2									
	5 Nr	:	ø Auße	n/Inn	en:	1		3									
	6 Nr	:	ø Auße	n/Inn	en:			4									
10	Angaben	über	Grundwa	asser	, Verfü	llung und	l Aus	bau									
Was	ser erstn	nals an	getroffer	bei		m, Anstie	g bis		m ı	unter A	Ansa	atzpunkt					
Höcl	nster gen	nessen	er Wass	ersta	nogleich	n Ansatzp	unkt l	bei			m	n Bohrtie	fe				
Verf	üllung: C	.50	m bis	2.00	m /	Art: Bohr ç	gut		von:		m k	bis:	m	Art:			
		Filter		ð					ittung	ıKörnı	una			errsch			OK Peilrohr m über/unter
Nr	von m	bis		im		Art	von	m	bis m	mr		von m	bis r	n		Art	Ansatzpunkt
	4.00	18.	00	80	Filt	erkies	3	.00	18.00			0.00	0.5			eton	
		1-										2.00	3.0	00	Ton	sperre	
		1							<u> </u>								
11 S	Sonstige	Angab	en Dei	GWI	/IST wu	ırde mit e	iner F	örde	ermenge v	on ca.	1,50	0m³∕h klar	gepum	ipt (2	,00 Sto	i.).	
Datu	ım:			Firm	ensten	npel:			U	ntersc	hrift:	:					
																	DC

F.C. van Dornick GmbH Wöhrmannstraße 29-31 47546 Kalkar Tel.(02824) 9251-0 Fax. 925151 Anlage Bericht:

Az.:


Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.							
Bohi	rung Nr. 780172				Blatt 3	Datum: 12.02.2 13.02.2	014-		
1		2			3	4	5	6	
Bis	a) Benennung der Bode und Beimengungen				Bemerkungen	Entnommene Proben			
m	b) Ergänzende Bemerk	ungen			Sonderproben Wasserführung			Tiefe	
unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-	
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)	
	a) Auffüllung								
	b)								
1.00	c)	d)	e) schwa	rz					
	f)	g)	h)	i)					
	a) Feinsand, schluffig								
	b)								
4.00	c)	d)	e) braun						
	f)	g)	h)	i)					
	a) Feinkies, grobsandiç	9							
0.50	b)								
9.50	c)	d)	e) grau						
	f)	g)	h)	i)					
	a) Mittelkies, Feinkies,	sandig							
18.00	b)								
10.00	c)	d)	e) grau						
	f)	g)	h)	i)					
	a) Feinsand, schluffig								
18.30	b) [Tertiär]								
18.30 Endtiefe	c)	d)	e) grün						
	f)	g)	h)	i)					

	F.C. van Dornick GmbH	Projekt : Mönchengladbach Lürrip, Lürriper Str.
	Wöhrmannstraße 29-31	Projektnr.: 813244
	47546 Kalkar	Anlage :
,	Tel.(02824) 9251-0 Fax. 925151	Maßstab : 1: 100 / 1: 25

F.C. van Dornick GmbH Wöhrmannstraße 29-31 47546 Kalkar

Tel.(02824) 9251-0 Fax. 925151

Kopfblatt nach DIN 4022	zum Schichtenverzeichnis	Archiv-Nr:	Anlage:
für Bohrungen		Aktenzeichen:	Bericht:

1 Objekt Mönchengladbach Anzahl der Seiten des Schichtenverzeichnisses: 4

Lürrip, Lürriper Str. Anzahl der Testberichte und ähnliches:

2 Bohrung Nr. **780173** Zweck: **Sanierungsuntersuchungen**

Ort: Mönchengladbach, Lürrip

Lage (Topographische Karte M = 1 : 25000): Nr:
Rechts: Hoch: Lotrecht Richtung:

Höhe des a) zu NN m

Ansatzpunktes b) zu m gleich Gelände

3 Lageskizze (unmaßstäblich)

Bemerkung: Handschachtung: B=0.40m; L=0.40m; T=1.50m

4 Auftraggeber: Stadtverwaltung Mönchengladbach

Fachaufsicht:

5 Bohrunternehmen: F.C. van Dornick GmbH

gebohrt von: 12.02.2014 bis: 12.02.2014 Tagesbericht-Nr: Projekt-Nr: 813244

Geräteführer **Herr Kungel** Qualifikation: **Bohrgeräteführer**

Geräteführer: Qualifikation: Geräteführer: Qualifikation:

6 Bohrgerät Typ:Baujahr:Bohrgerät Typ:Baujahr:

7 Messungen und Tests im Bohrloch:

8 Probenübersicht:		Art - Behälter	Anzahl	Aufbewahrungsort
	Bohrproben	1 Liter Gläser	19	Kalkar
	Bohrproben			
	Bohrproben			
	Sonderproben			
	Wasserproben			

9 Bohrtechnik 9.1 9.1 Kurzzeichen 9.1.1 Bohrverfahren 9.1.1.1 Art: BK = Bohrung mit durchgehender Gewinnung gekernter Proben =					BuP= E	BR = Bohrung mit durchgehender Gewinnung nichtgekernter Proben BuP= Bohrung mit Gewinnung unvollständiger Proben BS = Sondierbohrungen = BKR= BK mit richtungsorientierte Kernentnahme BKB= BK mit beweglicher Kernumhüllung BKF= BK mit fester Kernumhüllu											
	.2 Löse = drehe					ram = druck =	ran drü					schla greif	ag = s = g	chlag reifer			
9.1.2 Bohrwerkzeug 9.1.2.1 Art: EK = Einfachkernrohr DK = Doppelkernrohr TK = Dreifachkernrohr S = Seilkernrohr				VK = H = D =	Dia Gre	llkror rtme aman eifer	ne tallkrone tkrone			Schr Spi Kis Ven Mei SN	= S = K = V = N		e umpe oohrer I	= =			
G =	. .2 Antri : Gestär : Seil					F =	= Ha = Fre = Vib	eifall				DR HY		ruckl Iydra			
WS=	.3 Spüll Wasse Luft	hilfe: r					Sol Dic Scl					d id		irekt ndirek	ct		
9.2	Bohrtec	nnisch	e Tabelle	n													
	Tiefe in n hrlänge i		Bohrve	1					erkzeug	Sp	ül₌	Außen	Verro] Tiet	fo	
VC		ois	Art	Lö	sen	Art	ø m	nm	Antrieb	hil	fe	ø mm	øn		m	Ber	merkungen
0,0	00 19	9,00	BuP		rot	rot	Н	K	G			280					
		+															
9.3	Bohrkro	nen						9.4	Gerätefül	rer-W	ech:	sel				<u> </u>	
	1 Nr	:	ø Auße	n/Inn	en:	/		Γ	_ Datur				- : ,			me	
	2 Nr		ø Auße			/	/ Nr		Tag/Monat U Jahr		Uh	rzeit	Tiefe		Geräte für	eführer _I Ersatz	Grund
	3 Nr	:	ø Auße	n/Inn	en:	/		1									
	4 Nr	:	ø Auße	n/Inn	en:	1		2									
	5 Nr	:	ø Auße	n/Inn	en:	1		3									
	6 Nr		ø Auße	n/Inn	en:	1		4									
10	Angaben	über (Grundwa	asser	, Verfü	llung und	l Aus	bau									
Was	ser erstn	nals an	getroffen	bei	1	m, Anstie	g bis		mι	unter A	Ansa	atzpunkt					
Höcl	nster gen	nessen	er Wass	ersta	nogleich	n Ansatzp	unkt l	bei			m	n Bohrtie	fe				
Verf	üllung: 0	.50	m bis	2.00	m /	Art: Bohr ç	jut		von:		m k	ois:	m	Art:			
		Filter		a					ittung	. Körn	ına			errsch			OK Peilrohr
Nr	von m	bis		ø im		Art	von	m	bis m	Körnı mn		von m	bis ı	n		Art	m über/unter Ansatzpunkt
	4.00	19.	00	80	Filte	erkies	3	.00	19.00			0.00	0.5	50	В	eton	
		1										2.00	3.0	00	Ton	sperre	<u> </u>
		1								<u> </u>							
11 S	Sonstige	Angab	en Dei	GWI	MST wu	rde mit e	iner F	örde	ermenge v	on ca.	1,50	Om³∕h klar	gepum	ipt (2	,00 Sto	1.).	
Datum: Firmenstempel:							U	ntersc	hrift:								
																	DC

F.C. van Dornick GmbH Wöhrmannstraße 29-31 47546 Kalkar Tel.(02824) 9251-0 Fax. 925151 Anlage
Bericht:

Az.:

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Bauvor	haben: Mönchengladb	ach Lürrip, Lürriper Str.						
Bohi	rung Nr. 780173				Blatt 3	Datum: 12.02.2 12.02.2	014-	
1		2			3	4	5	6
Bis	a) Benennung der Bode und Beimengungen				Bemerkungen	Е	ntnomme Proben	ene
m	b) Ergänzende Bemerk	-	Γ		Sonderproben Wasserführung			Tiefe
unter Ansatz- punkt	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr	in m (Unter- kante)
рипк	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Conduged			Karnej
	a) Auffüllung							
0.00	b)							
0.60	c)	d)	e) schwa	ırz				
	f)	g)	h)	i)				
4.00	a) Feinsand, schluffig							
	b)							
4.00	c)	d)	e) braun					
	f)	g)	h)	i)				
	a) Feinkies, sandig							
0.00	b)							
6.00	c)	d)						
	f)	g)	h)	i)				
	a) Kies, sandig							
9.80	b)							
9.00	c)	d)	e) grau					
	f)	g)	h)	i)				
	a) Mittelkies, feinkiesig	, sandig						
19.00	b)							
19.00	c)	d)	e) grau					
	f)	g)	h)	i)				

F.C. van Dornick GmbH Wöhrmannstraße 29-31 47546 Kalkar Tel.(02824) 9251-0 Fax. 925151

Anlage	

Bericht:

Az.:

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Bauvorhaben: Mönchengladbach Lürrip, Lürriper Str.								
Bohi	rung Nr. 780173				Blatt 4	Datum: 12.02.2 12.02.2	014-	
1		2			3	4	5	6
Bis	a) Benennung der Bod und Beimengungen				Bemerkungen	Ei	ntnomme Proben	
m	b) Ergänzende Bemerk	kungen			Sonderproben Wasserführung			Tiefe
unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art Nr	Nr	in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Feinsand, schluffig							
	b) [Tertiär]							
19.30 Endtiefe	c)	d)	e) grün					
Enatiele	f)	g)	h)	i)				

TEIL B

SANIERUNGSBEREICH 1: EHEMALIGE ENTFETTUNGSANLAGE UND BENZINABSCHEIDER INNENHOF, REME-WEST

B 1 Ergebnisse der Voruntersuchungen

Im Rahmen von Gefährdungsabschätzungen, zuletzt durch agus 2010, wurden im Bereich der bis 1992 von der Britischen Rheinarmee genutzten ehemaligen Entfettungsanlage in der Panzerhalle (Sanierungsbereich 1 b) erhebliche Belastungen von Boden und Bodenluft mit 1,1,1-Trichlorethan festgestellt. Auch das Grundwasser zeigte im Schadensherd (Messstelle und direct-push-Proben) stark erhöhte LHKW-Konzentrationen mit deutlichen Überschreitungen der Prüfwerte nach BBodSchV (1999) bzw. Geringfügigkeitsschwellenwerte nach LAWA (2004), so dass von einer Gefährdung des Schutzgutes Grundwasser auszugehen war und eine Sanierungsuntersuchung erforderlich wurde. Daneben wiesen direct-push-Grundwasserproben im Bereich der ehemaligen Entfettungsanlage, besonders aber im Umfeld eines Benzinabscheiders im unmittelbar nördlich angrenzenden Innenhof (Sanierungsbereich 1 a) stark erhöhte Gehalte an BTEX und LAK auf.

LHKW haben eine höhere Dichte als Wasser und gehören zu den sogenannten DNAPLs (dense non aqueous phase liquids), BTEX und LAK haben eine geringere Dichte als Wasser und gehören zu den sogenannten LNAPLs (light non aqueous phase liquids).

B 2 Untersuchungsprogramm

Im Rahmen dieser Sanierungsuntersuchung sollen u.a. der Belastungsbereich abgegrenzt, die Ergebnisse hinsichtlich einer Sanierung bewertet und Sanierungsmöglichkeiten aufgezeigt und hinsichtlich der Kosten und des Nutzens abgewogen werden.

Dazu wurde folgendes Untersuchungsprogramm durchgeführt:

- 41 Rammkernsondierungen zur weiteren Erkundung und Abgrenzung der LHKW- bzw.
 BTEX-/LAK-Belastungen und Entnahme von Bodenproben (im Bereich des LHKW-Schadens Methanol-headspace-Proben) (vgl. Abb. B 1-1).
- Entnahme von direct-push-Grundwasserproben aus 9 Bohrlöchern,
- Analyse von 120 Bodenproben aus Rammkernsondierungen auf LHKW sowie z.T. auf leichtflüchtige aliphatische Kohlenwasserstoffe (LAK) und BTEX,
- Analyse der 9 direct-push-Grundwasserproben auf LAK, BTEX, LHKW und Naphthalin,
- Einrichtung von zwei Grundwassermessstellen (Durchmesser 4 Zoll) im n\u00e4heren (GWM 780174) und weiteren GW-Abstrom (GWM 780170) durch das Bohrunternehmen F.C. van Dornick GmbH (47546 Kalkar, W\u00f6hrmannstra\u00dfe 29),
- Beprobung (Pumproben und z.T. Schöpfproben) und Stichtagsmessung aller Messstellen im Gesamtgebiet im Rahmen der Grundwasserkampagnen (vgl. Teil A) am 21./22.08.2012, 20./21.03.2013, 02./05.08.2013, 13./14.02.2014, 08./09.09.2014, 24./25.11.2014 und Untersuchung des Grundwassers auf die vor-Ort-Parameter pH-Wert, elektrische Leitfähigkeit, Redoxpotential und Sauerstoffgehalt sowie auf KW, Phenole, BTEX, LHKW, TOC, Arsen, Schwermetalle, Cyanide, Chlorid, Sulfat, Sulfid, Nitrat, Nitrit, Ammonium (vgl. Tab. A 2-1 bis A 2-7).

Bodenluftuntersuchungen wurden im Rahmen der Sanierungsuntersuchung nicht durchgeführt.

B 3 Ergebnisse der Sanierungsuntersuchung

B 3.1 Boden

Der Bodenaufbau entspricht dem "REME-typischen" Bild: Unter einer weitgehend vorhandenen Versiegelung (Betonboden in der Panzerhalle, Verbundpflaster im Innenhof) folgt das anstehende geogene Sediment bzw. der "gewachsene Boden", bestehend zunächst aus Schluffen (Lößmaterial; Grundwasserdeckschicht) bis 2,5-3,3 m Tiefe. Im Liegenden schließen sich grundwasserführende, bis zur Endteufe der Bohrungen (i.d.R. 5 m) vorwiegend sandigkiesige Ablagerungen der Rheinterrasse an (vgl. Abb. B1-3).

Die 19 weiteren durchgeführten Rammkernsondierungen im Umfeld der ehem. Entfettungsanlage (Sanierungsbereich 1b; vgl. Abb. B 1-1) zeigten eine sehr inhomogene Verteilung von
1,1,1-Trichlorethan (TCA) in den anstehenden quartären Sedimenten (Löß-/Auenlehme über
Mittelterrassensanden und -kiesen) bis in die wassergesättigte Zone. Das kam zum einen in
den sehr unterschiedlichen sensorischen Befunden ("chemischer Geruch") als auch in den
gemessenen LHKW-Gehalten der Bodenproben (von nicht nachweisbar in den randlichen
Bereichen bis 453 mg/kg in RKS S1-33b im Schadenszentrum) zum Ausdruck.

Lokal kommen hier, z.T. unabhängig von den LHKW-Konzentrationen, erhöhte BTEX-Gehalte vor (z.B. RKS S1-20, -24, -25, -28, vgl. Tab B 2-3).

In den untersuchten sensorisch auffälligen Bodenproben des Innenhofs (Sanierungsbereich 1a) sind z.T. BTEX (max. 5,1 mg/kg) und LAK (max. 550 mg/kg) festgestellt worden (s. Tab. B 2-3).

Die Bodenproben der unmittelbar östlich der Belastungen im Innenhof im Grundwasserabstrom an der Lohstraße gelegenen Bohrungen RKS S1-39, -40 und -41 (vgl. Abb. B 1-2) waren sensorisch unauffällig.

B 3.2 Grundwasser

Eine Grundwassernutzung findet im Bereich des REME-Geländes sowie im näheren Abstrom nicht statt.

Nach den bisherigen Stichtagsmessungen zeichnet sich für den Sanierungsbereich 1 ein sehr geringer hydraulischer Gradient ab: meist etwa 1:1000, max. 1:400, zeitweise <1:4000. Bei einem gemessenen kf-Wert von 8•10⁻⁴ m/s (Mull & Partner 1993) und einer angenommen Porosität von 20 % bedeutet das eine Abstandsgeschwindigkeit von meist ca.125 m/Jahr, max. 315 m/Jahr, zeitweise <30 m/Jahr bei östlicher Fließrichtung.

Bei dem vorliegenden sandig-kiesigen Porengrundwasserleiter nicht zu erklären ist das starke GW-Gefälle auf wenigen Metern zwischen den Messstellen westlich bzw. am Westrand der Lohstraße (780101 und 780130) einerseits und der neuen Messstelle 780174 auf der Ostseite der Lohstraße andererseits mit einem um ca. 0,6 m niedrigeren GW-Stand.

Sanierungsbereich 1a:

Im Innenhof sind in direct-push-Grundwasserproben im Umfeld des Öl-/ Benzin-Abscheiders und entlang der Kanalisation zur Lohstraße folgende Maximal-Konzentrationen gemessen worden: BTEX 710 μ g/l, TCA 880 μ g/l, LAK 40000 μ g/l.

BTEX und LAK haben sich hier als aufschwimmende Phase, ausgehend vermutlich von Undichtigkeiten im Bereich des Benzinabscheiders, in Grundwasserfließrichtung bzw. entlang des eventuell undichten Abwasserkanals ausgebreitet und zu den festgestellten Belastungen geführt. (vgl. Abb. B 1-2). Der darüber liegende grundwasserfreie Schluff ist unauffällig, die darunter liegenden wasserführenden Sande sind im oberen Teil lokal sensorisch auffällig.

Im Abstrom östlich der Lohstraße konnten LAK, BTEX und LHKW in direct-push-Grundwasserproben ebenso wenig nachgewiesen werden, wie in der neu errichteten Grundwassermessstelle 780174. Der Grundwasserstand liegt hier etwa 0,6 m tiefer als in den Messstellen 780100 und 780101 in der Lohstraße.

Sanierungsbereich 1b:

Die in direct-push-Grundwasserproben 2010 gemessene Maximal-Konzentration im Schadenszentrum lag bei 17000 μ g/l. In der dort liegenden Grundwassermessstelle (GWM 780058) wurden in den Jahren 1993-2001 in Schöpfproben hohe (meist >3000 μ g/l), in Pumpproben deutlich niedrigere (meist <100 μ g/l) Konzentrationen an 1,1,1-Trichlorethan festgestellt (vgl. Tab. B 2-2). Seit 2002 wurden insgesamt wesentlich niedrigere, aber besonders bei den 12 Schöpfproben stark unterschiedliche Gehalte gemessen: in 50% der Beprobungen <10 μ g/l (davon 3 mal <Bestimmungsgrenze) und 50% >10 μ g/l (davon in 4 Fällen >100 μ g/l, max. 590 μ g/l). Die Konzentrationen in den 14 Pumpproben waren dagegen einheitlich niedrig: fast immer <1 μ g/l bzw. <Bestimmungsgrenze, max. 1,3 μ g/l (17.04.2002). Insgesamt deutet alles darauf hin, dass die hohen LHKW-Gehalte an die aufschwimmende Phase gebunden sind.

In der im unmittelbaren Abstrom gelegenen, erst seit 2002 bestehenden Messstelle 780730 wurden nur im August 2008 erhöhte Konzentrationen sowohl in der Schöpf- als auch in der Pumpprobe ermittelt (230 bzw. 489 μ g/l). Bei den 5 Messungen davor und bei den bei 7 Beprobungskampagnen danach war 1,1,1-Trichlorethan nicht oder nur in Spuren (0,16 bzw. 1,5 μ g/l) in Schöpfproben nachweisbar (vgl. Tab. B 2-2). Das gilt auch für alle anderen Messstellen im Abstrom mit Ausnahme von GWM 780078 und 780079, die nur in den Schöpfproben vom 31.07.1995 erhöhte Werte (840 bzw. 110 μ g/l) gezeigt haben. Nur 5 Wochen davor und in allen Messungen danach waren die Gehalte >0,5 μ g/l (Bestimmungsgrenze).

B 4 Bewertung der Untersuchungsergebnisse

Im Bereich des Innenhofs der Fa. Pollrich (Sanierungsbereich 1a) ist die festgestellte LAK-/BTEX-Belastung nach den bisherigen Untersuchungsergebnissen auf den Benzinabscheider und den direkten Grundwasserabstrom bzw. den Verlauf des davon abgehenden Abwasser-kanals konzentriert. Relevante Schadstoffausbreitungen bzw. eine Gefährdung des Grundwassers im Abstrom sind dabei nicht erkennbar, Aussagen zu Schadstofffrachten damit nicht möglich. Das ist vermutlich auf folgende Gegebenheiten zurückzuführen:

 seit Aufgabe des Standortes durch die Britische Armee 1992 gelangten keine weiteren LAK-/ BTEX-haltigen Abwässern mehr in den Abscheider und damit in den Boden bzw. die wassergesättigte Zone,

- der Schadensbereich ist versiegelt, so dass keine Schadstoffverlagerung mit dem Sickerwasser erfolgen kann,
- der hydraulische Gradient und damit die Abstandsgeschwindigkeit sind hier sehr niedrig.

Mögliche Sanierungszielwerte für BTEX (20 μ g/l = GFS), Benzol (GFS = 1 μ g/l) und LAK (100 μ g/l = GFS für KW-Index) werden schon im näheren Abstrom, d.h. \leq 10 m entfernt, eingehalten (vgl. Abb. C 1-2).

Im Bereich der ehem. Entfettungsanlage (Sanierungsbereich 1b) sind Grundwasserbelastungen durch LHKW auf die aufschwimmende Phase im Schadensherd konzentriert. Im direkten Abstrom wurden nur bei einer Beprobungskampagen (18.08.2008) erhöhte Gehalte in Schöpfund Pumpproben festgestellt.

Relevante Schadstoffausbreitungen bzw. eine Gefährdung des Grundwassers im Abstrom sind nicht erkennbar, Aussagen zu Schadstofffrachten damit nicht möglich. Das ist möglicherweise auf folgende Gegebenheiten zurückzuführen:

- bei Aufgabe des Standortes durch die Britische Armee 1992 wurde das eingesetzte Entfettungsmittel 1,1,1-Trichlorethan (TCA) vermutlich vorsätzlich über das Abwassersystem entsorgt und gelangte durch Undichtigkeiten bzw. aufgrund seiner sehr hohen Mobilität in den Boden und z.T. in die wassergesättigte Zone; danach gelangten keine weiteren LHKW mehr in den Untergrund,
- die Aufnahmekapazität des unterlagernden Lehmbodens ist insgesamt nicht überschritten worden (<Residualsättigung),
- der Schadensbereich ist überdacht und versiegelt, so dass keine Schadstoffverlagerung mit dem Sickerwasser erfolgen kann,
- der hydraulische Gradient und damit die Abstandsgeschwindigkeit sind hier sehr niedrig,
- der in die wassergesättigte Zone gelangte Anteil ist mit der Grundwasserströmung abtransportiert worden, d.h. eine möglicherweise vorhandene LHKW-Fahne im Grundwasser könnte vor Einrichtung der Abstrommessstelle 780130 im Jahr 2002 abgerissen sein.

B 5 Sanierungsmöglichkeiten und Kostenschätzung / Handlungsempfehlungen

Basierend auf den vorliegenden Gegebenheiten werden im folgenden für die Sanierung des festgestellten LAK-/BTEX-Schadens im Innenhofs (Sanierungsbereich 1a) zwei und für den LHKW-Schaden im Bereich der ehem. Entfettungsanlage (Sanierungsbereich 1b) vier Sanierungsmöglichkeiten vorgestellt, die sowohl von der "Beseitigungsquote" des Schadens als auch von den Kosten Extreme darstellen. In beiden Bereichen sind bei den Varianten mit Herdsanierung mehr oder weniger umfangreich Kanalbaumaßnahmen erforderlich.

Sanierungsbereich 1a (Öl-/Benzinabscheider im Innenhof der Firma Pollrich)

Variante 1:

Herdsanierung, d.h. möglichst vollständiger Austausch des belasteten Bodens auf ca. 100 m² Fläche mittels Sechseck-Spundwaben. Je nach Umfang der erforderlichen Hochbau-(Brandschutzwand) sowie Kanalbauarbeiten ist mit Kosten in der Größenordnung von 300.000 bis 400.000 €zu rechnen.

Variante 1		
Position	Preis	
Teilabriss und Entsorgung der Wand zum Innenhof (Länge 25 m, Höhe 12 m) (~ 300 m² / 25,- €pro m²)	7.500,-	
Mauerwerksgerüst (~ 300 m² / 8,50 €pro m²)	2.550,-	
Wiederaufbau der Wand zum Innenhof (Länge 25 m, Höhe 12 m) (~ 300 m² / 122,50 € pro m²)	36.750,-	
Fachwerksstahlträger ausbauen, lagern, einbauen (5 Stück) (125,- €/ 175,- €)	1.500,-	
Baunebenkosten (12,33% der Bausumme) (Planung, Statik, Genehmigungsverfahren, Bauüberwachung)	6.000,-	
Verbauarbeiten	25.000,-	
Erdarbeiten (Baustelleneinrichtung, Vermessungsarbeiten, Ausschachten bis ca. 2 m, auskoffern des belasteten Bodens mittels Spundwaben weitere 2 bis 3 m tief (d.h. bis ca. 4-5 m u. GOK), Rückverfüllung, Gutachterliche Begleitung inkl. Sanierungsplanung, Erstellung A+S-Plan nach DGUV Regel 101-004 (früher BGR 128), Grundwasserüberwachung)	25.000,-	
Pflasterung (~ 300 m² / 33,- €pro m²)	10.000,-	
Entsorgungskosten (900 t / 50,- €pro t)	45.000,-	
GW-Absenkung & Mehrphasenextraktion (MPE) inkl. Analytik (3 Monate)	60.000,-	
Sonstige Arbeitsschutzmaßnahmen (Messtechnische Überwachungen, Einsatz umgebungsluftunabhängiger Maschinen etc.)	20.000,00	
Gesamtsumme (netto)	239.300,-	
Bau einer Brandwand zum Innenhof (Länge 25 m, Höhe 12 m) (~ 300 m² / 350,- €pro m²)	105.000,-	

Sanierung / Neubau des Regenwasserkanals im Innenhof der Firma Pollrich	
Position	Preis
Ausbau und Entsorgung (mind. 30 m) (250,- €pro m)	7.500,-
Neubau, DN 300, Tiefe 2,50 m (mind.30 m) (600,- €pro m)	18.000,-
1 Anschlussbauwerk	6.000,-
1 Revisionsbauwerk	5.000,-
Gesamtsumme (netto)	36.500,-

Sanierung / Neubau des Schmutzwasserkanals im Innenhof der Firma Pollrich		
Position	Preis	
Ausbau und Entsorgung (mind. 10 m) (250,- €pro m)	2.500,-	
Neubau, DN 250, Tiefe 3,00 m (mind.10 m) (700,- €pro m)	7.000,-	
1 Anschlussbauwerk	6.000,-	
1 Revisionsbauwerk	5.000,-	
Gesamtsumme (netto)	20.500,-	

Variante 2:

Erhaltung (ggf. Ausbesserung) der Versiegelung und Monitored Natural Attenuation (MNA; überwachter natürlicher Rückhalt und Abbau). Grundwasserüberwachung durch etwa halbjährliche Stichtagsmessungen und Beprobungskampagnen im Februar/März (vermuteter GW-Hochstand) und September/Oktober (vermuteter GW-Tiefstand). Zunächst sollte der Untersuchungsumfang (analysierte Parameter und Anzahl der Messstellen) beibehalten werden, d.h. für das gesamte REME-Gelände mit 3 Belastungsschwerpunkten und 4 Sanierungsbereichen.

Variante 2		
Position	Preis	
GW-Stichtagsmessung, -beprobung und -analytik zweimal jährlich für das gesamte REME-Gelände	10.000,-	
GW-Monitoring anteilig für den Sanierungsbereich 1a	2.500,-	
Gesamtsumme (netto) pro Jahr	2.500,-	

Damit sollte aus Gründen der Verhältnismäßigkeit Variante 2 vorgezogen werden. Die dafür erforderlichen Rahmenbedingungen (insbesondere eine intakte Versiegelung) müssen auch im Falle einer Umnutzung der Fläche erhalten bleiben.

Sanierungsbereich 1b (Entfettungsanlage)

Varianten 1 und 2:

Herdsanierung, d.h. möglichst vollständiger Austausch des belasteten Bodens auf ca. 180 m² Fläche (vgl. Abb. B 1-5) mittels Sechseck-Spundwaben. Je nach Umfang der erforderlichen Abriss- sowie Kanalbauarbeiten ist mit Kosten in der Größenordnung von ca. 660.000 bis 2.000.000 €zu rechnen.

Variante 1: Bodenaustausch inkl. Hallenabriss und Hallenneubau

Variante 1		
Position	Preis	
Teilabriss der ehem. Panzerhalle (Länge 60 m, Breite 36 m, beide Schiffe, ca. 2.100 m²)	125.000,-	
Zulage für Sicherungsmaßnahmen an der neuen Kopfseite (= provisorisches Schließen und statische Stabilisierung)	55.000,-	
Wiederaufbau der Halle (Länge 60 m, Breite 36 m, beide Schiffe, ca. 2.100 m²)	1.260.000,-	
Baunebenkosten (12,33% der Bausumme) (Planung, Statik, Genehmigungsverfahren, Bauüberwachung)	177.500,-	
Verbauarbeiten	55.000,-	
Erdarbeiten (Baustelleneinrichtung, Vermessungsarbeiten, Auskoffern des belasteten Bodens mittels Spundwaben bis ca. 4-4,5 m u. GOK, Rückverfüllung, Gutachterliche Begleitung inkl. Sanierungsplanung, Erstellung A+S-Plan nach DGUV Regel 101-004 (früher BGR 128), Grundwasserüberwachung)	30.000,-	
Pflasterung (~ 375 m² / 33,- €pro m²)	13.000,-	
Entsorgungskosten (~ 1.400 t / 50,- €/t)	70.000,-	
Schwarz-Weiß-Anlage (Miete, Betriebskosten)	15.000,-	
Reifenwaschanlage (Miete, Betriebskosten)	20.000,-	
GW-Absenkung & Mehrphasenextraktion (MPE) inkl. Analytik (3 Monate)	60.000,-	
Sonstige Arbeitsschutzmaßnahmen (Messtechnische Überwachungen, Einsatz umgebungsluftunabhängiger Maschinen etc.)	20.000,-	
Gesamtsumme (netto)	1.900.500,-	

Variante 2: Bodenaustausch inkl. Hallenabriss ohne Hallenneubau

Variante 2		
Position	Preis	
Teilabriss der ehem. Panzerhalle (Länge 60 m, Breite 36 m, beide Schiffe, ca. 2.100 m²)	125.000,-	
Zulage für Sicherungsmaßnahmen an der neuen Kopfseite (= provisorisches Schließen und statische Stabilisierung)	55.000,-	
Baunebenkosten (12,33% der Bausumme) (Planung, Statik, Genehmigungsverfahren, Bauüberwachung)	22.200,-	
Verbauarbeiten	55.000,-	
Erdarbeiten (Baustelleneinrichtung, Vermessungsarbeiten, Auskoffern des belasteten Bodens mittels Spundwaben bis ca. 4-4,5 m u. GOK, Rückverfüllung, Gutachterliche Begleitung inkl. Sanierungsplanung, Erstellung A+S-Plan nach DGUV Regel 101-004 (früher BGR 128), Grundwasserüberwachung)	30.000,-	
Pflasterung (~ 375 m² / 33,- €pro m²)	13.000,-	
Entsorgungskosten (~ 1.400 t / 50,- €/t)	70.000,-	
Schwarz-Weiß-Anlage (Miete, Betriebskosten)	15.000,-	
Reifenwaschanlage (Miete, Betriebskosten)	20.000,-	
GW-Absenkung & Mehrphasenextraktion (MPE) inkl. Analytik (1 Monat)	60.000,-	
Sonstige Arbeitsschutzmaßnahmen (Messtechnische Überwachungen, Einsatz umgebungsluftunabhängiger Maschinen etc.)	20.000,-	
Gesamtsumme (netto)	485.200,-	
Bau einer Brandwand an der neuen Kopfseite (Länge 36 m, Höhe 12 m) (~ 430 m² / 350,- €pro m²)	150.000,-	

Erforderliche Kanalarbeiten für die Sanierungsvarianten 1 und 2:

Umlegung des Regenwasseranschlusses aus der Panzerhalle in die Lohstraße		
Position	Preis	
Neubau, DN 300, Tiefe 2,50 m (10 m aus Halle in Lohstraße) (600,- €pro m)	6.000,-	
1 Anschlussbauwerk	6.000,-	
1 Revisionsbauwerk	5.000,-	
Gesamtsumme (netto)	17.000,-	

Sanierung des Schmutzwasserkanals in der Lohstraße	
Position	Preis
Ausbau und Entsorgung (250,- €pro m) (mind. 40 m der 68,37 m zwischen den Schächten 32744314 und 32742307)	10.000,-
Neubau, DN 250, Tiefe 3,50 m (750,- €pro m) (mind. 40 m der 68,37 m zwischen den Schächten 32744314 und 32742307)	30.000,-
2 Revisionsbauwerke	10.000,-
Gesamtsumme (netto)	50.000,-

Neubau eines Regenwasserkanals in der Lohstraße		
Position	Preis	
Neubau, DN 300, Tiefe 2,50 m <i>(600,- €pro m)</i> (40 m ab Schacht 32744314 in Richtung Fleenerweg / Schacht 32742307)	24.000,-	
1 Anschlussbauwerk	6.000,-	
2 Revisionsbauwerke	10.000,-	
Gesamtsumme (netto)	40.000,-	

Variante 3:

Thermische in-situ-Sanierung mit dem THERIS-Verfahren. Dabei erfolgt die Beseitigung des Schadensherdes durch Verdampfung der flüssigen Schadstoffe mittels Untergrunderwärmung mit festen Wärmequellen und nachfolgende Gasextraktion aus dem Untergrund über eine nachgeschaltete Bodenluftabsaugung über Aktivkohle. Das THERIS-Verfahren wurde an der Versuchseinrichtung zur Grundwasser- und Altlastensanierung (VEGAS) am Institut für Wasserbau der Universität Stuttgart entwickelt (HIESTER & SCHRENK 2008).

Variante 3		
Position	Preis	
Vorleistungen (Planung, Statik, Genehmigungsverfahren)	15.000,-	
Kernleistungen (Einbau von Heizelementen (Heizlanzen), Bau von Bodenluftpegeln, Bodenluftabsaugung, Reinigung über Aktivkohle)	110.000,-	
Bau- und Verfahrensbegleitende Leistungen	6.000,-	
Betriebskosten (ca. 3 Monate)	185.000,-	
GW-Absenkung & Mehrphasenextraktion (MPE) inkl. Analytik (3 Monate)	60.000,-	
Gesamtsumme (netto)	376.000,-	

Variante 4:

Erhaltung (ggf. Ausbesserung) der Versiegelung und Monitored Natural Attenuation (MNA; überwachter natürlicher Rückhalt und Abbau). Grundwasserüberwachung durch etwa halbjährliche Stichtagsmessungen und Beprobungskampagnen im Februar/März (vermuteter GW-Hochstand) und September/Oktober (vermuteter GW-Tiefstand). Zunächst sollte der Untersuchungsumfang (analysierte Parameter und Anzahl der Messstellen) beibehalten werden, d.h. für das gesamte REME-Gelände mit 3 Belastungsschwerpunkten und 4 Sanierungsbereichen.

Variante 4		
Position	Preis	
GW-Stichtagsmessung, -beprobung und -analytik zweimal jährlich für das gesamte REME-Gelände	10.000,-	
GW-Monitoring anteilig für den Sanierungsbereich 1b	2.500,-	
Gesamtsumme (netto) pro Jahr	2.500,-	

Damit sollte aus Gründen der Verhältnismäßigkeit Variante 4 vorgezogen werden. Die dafür erforderlichen Rahmenbedingungen (insbesondere eine intakte Versiegelung) müssen auch im Falle einer Umnutzung der Fläche erhalten bleiben.

Außerdem sollten nicht nur im Bereich der bekannten Schadensherde alle Eingriffe in den Boden oder Entsiegelungsmaßnahmen vermieden werden. Andernfalls müsste während der gesamten Bauzeit einen Begleitung durch einen Bodengutachter erfolgen, da zu befürchten ist, dass sich unter der großflächigen Versiegelung weitere Schadstoffnester befinden (z.B. durch unsachgemäße Ölwechsel etc.).

Anlage B 1

Abbildungen

ADD. B 1-1:	Lageplan der Rammkernsondlerungen (Inkl. Voruntersuchungen)
Abb. B 1-2:	Lageplan der Rammkernsondierungen, sensorische Befunde und BTEX-Gehalte in direct-push-Grundwasserproben
Abb. B 1-3:	West-Ost-Profilschnitt (A-A') im Bereich der ehemaligen Entfettungsanlage
Abb. B 1-4:	Bereich der Kontamination mit 1,1,1-Trichlorethan (TCA) anhand der Bodenluft- und Feststoffergebnisse
Λhh R 1-5:	Sanjerungszone und Kuhatur des Schadens

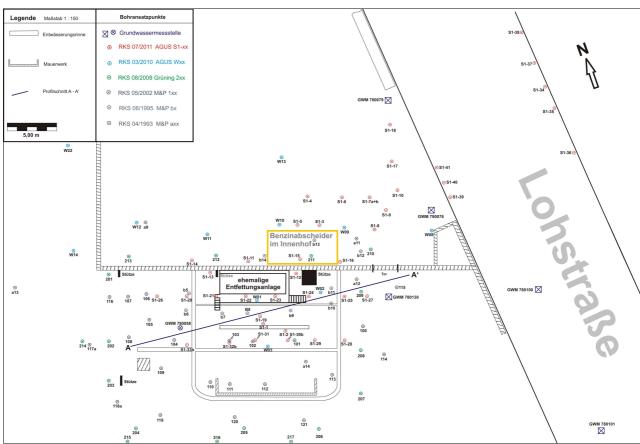


Abb. B 1-1: Lageplan der Rammkernsondierungen (inkl. Voruntersuchungen)

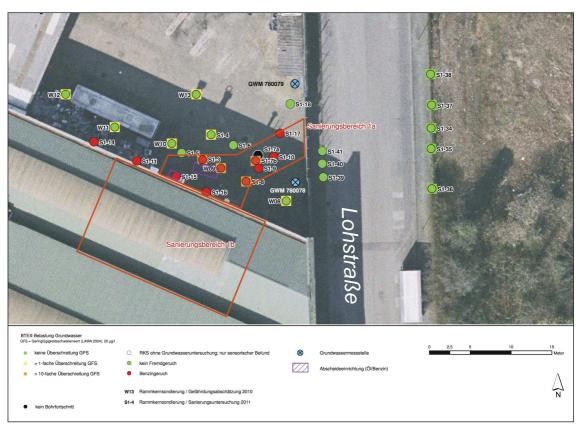


Abb. B 1-2: Lageplan der Rammkernsondierungen, sensorische Befunde und BTEX-Gehalte in direct-push-Grundwasserproben

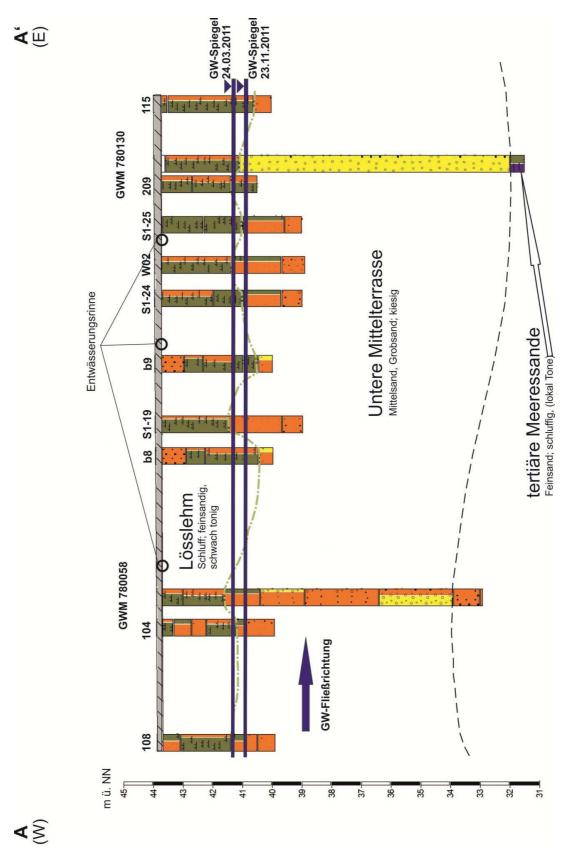


Abb. B 1-3: West-Ost-Profilschnitt (A-A') im Bereich der ehemaligen Entfettungsanlage (Quelle: Dipl.-Arbeit Jochen Klewin 2011)

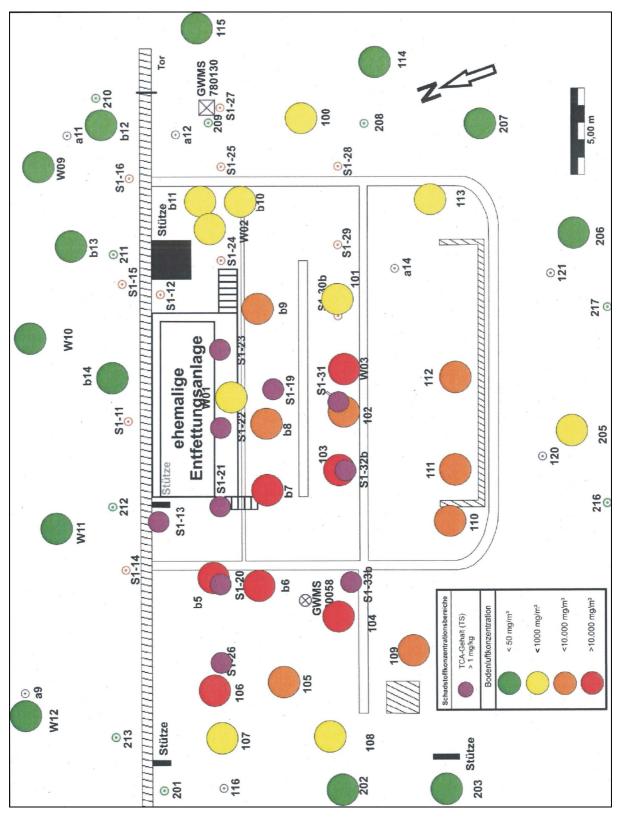


Abb. B 1-4: Bereich der Kontamination mit 1,1,1-Trichlorethan (TCA) anhand der Bodenluft- und Feststoffergebnisse (Quelle: Dipl.-Arbeit Jochen Klewin 2011)

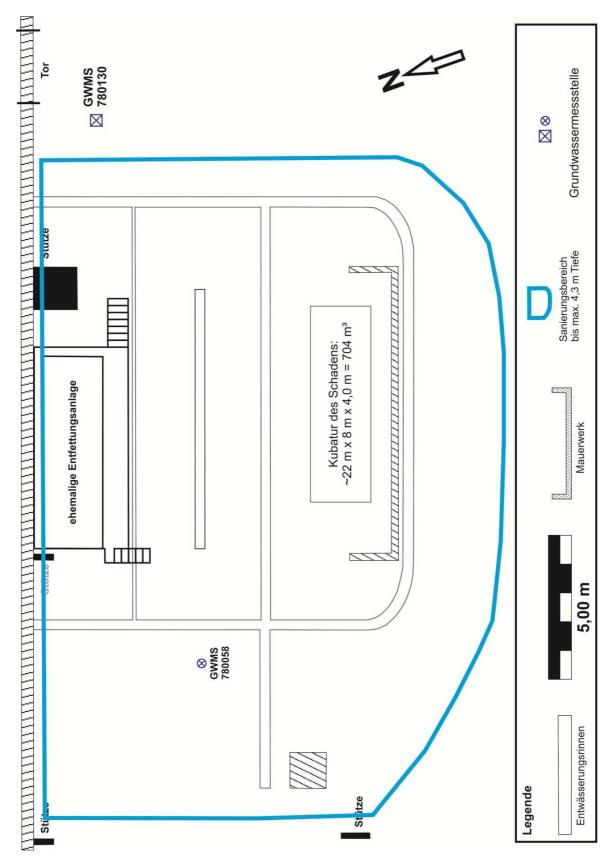


Abb. B 1-5: Sanierungszone und Kubatur des Schadens (Quelle: Dipl.-Arbeit Jochen Klewin 2011)

Anlage B 2

Tabellen

Tab. B 2-1:	Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen
Tab. B 2-2:	Entwicklung der 1,1,1-Trichlorethan-Gehalte im Grundwasser im Zeitraum von 1993 bis 2014
Tab. B 2-3:	Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)

Tab. B 2-1: Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen

Grundwasserme	ssstelle	W01	W02	W03	W08	W09	W10	W11	W12	W13	W14	S1-3	S1-4	S1-7	S1-8	S1-34	S1-35	S1-36	S1-37	S1-38	Bewertung	gsgrundlagen
																					BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit																					
Leichtflüchtige aliphatische KW (LAK)	μg/l	<500	<500	3200	<50	14000	<50	<50	<50	<50	<50	40000	300	1200	40000						(200)	(100)
Benzol	μg/l	<5	⟨5	9,7	1,2	3,3	0,92	1,2	0,84	1,0	4,6	2,2	1,7	1,5	0,75	<1	<1	<1	<1	√1	1	1
Toluol	μg/l	38	32	130	14	7,8	6,2	15	8,3	7,5	56	14	8,4	8,1	1,8							
Ethylbenzol	μg/l	14	12	98	4,1	91	23	16	6,9	4,4	15	120	28	47	99							
m/p-Xylol	μg/l	24	14	290	11	300	75	49	23	14	45	350	83	170	500							
o-Xylol	μg/l	16	14	250	7,8	11	5,4	9,6	7,1	5,7	28	220	61	8,1	8,5							
Summe BTEX	μg/l	92	72	780	38	410	110	91	46	33	150	710	160	230	610	<5	<5	<5	√5	<5	20	20
Vinylchlorid	μg/l	3,9	<2,5	<25	<2,5	<12,5	<2,5	<2,5	<2,5	<2,5	<2,5	8,2	<2,5	<2,5	<2,5							0,5
1.1 Dichlorethan												110	110	6,3	<5							
1,2 Dichlorethan	μg/l	34	\$	37	∜5	<25	<5	\$	√5	< 5	<5	<5	<5	< 5	<5						2	2
1,1,1-Trichlorethan	μg/l	6700	88	17000	9,4	14	65	97	77	280	40	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5		
Trichlorethen	μg/l	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<1	<1	<1	<1		10
Tetrachlorethen	μg/l	<0,5	<0,5	√5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<1	<1	<1	<1		10
Summe LHKW	μg/l	10000	740	25000	22	33	210	610	190	880	120	120	110	6,3	n.b.	<5	<5	<5	<5	√5	10	20
Naphthalin	μg/l	20	24	540	25	640	170	120	75	56	95	310	190	440	670						2	1

Tab. B 2-2: Entwicklung der 1,1,1-Trichlorethan-Gehalte im Grundwasser im Zeitraum von 1993 bis 2014 (in µg/l; Geringfügigkeitsschwellenwert nach LAWA 2004 für LHKW_{gessent}: 20 µg/l)

	26.04 1993	26.0 199		26. 19		31. 19		10. 19		30. 19		04.08. 2000	09.08. 2000	27. 20		17. 20		23.08. 2002	16.03. 2004	26. 20		10. 20	.09. 104	10. 20		18. 20	
GWM	Р	S	Р	0)	Р	s	Р	S	Р	S (?)	Р	S (?)	Р	8	Р	8	Р	Р	Р	0	Р	s	Р	8	Р	0	Р
780058	7,7	3100	30	6100	49	8100	240	7879	3,85	2100	7,1	3900	0,58	3800	11	22	1,3	63	<0,1	7,4	0,23	<0,5	<0,5	170	<0,5	<1	<1
780130		-				-	-	-			-	-	-	-	-	<0,5	<0,5	<0,5	<0,1	0,16	<0,1	-	<0,5		<0,5	230	489
780078				<0,5	2,1	840	<0,5	0,21	2,23				-		-	<0,5	<0,5	<0,5	<0,1			-	-				-
780079				<0,5	<0,5	110	<0,5	0,13	3,12				-	-		-		<0,5	-			-	-				-

		18.03.2010)	21.08	.2012	20.03	.2013	05.08	.2013	13.02	.2014	09.09	.2014	24.11	.2014
GWM	S	Р	Sohle	S	Р	S	Р	S	Р	S	Р	S	Р	S	Р
780058	42	<0,5	<0,5	560	0,62	<0,5	<0,5	3,3	<0,5	8,6	<0,5	590	<0,5	280	<0,5
780130	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	1,5	<0,5	<0,5	<0,5
780078	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
780079	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5

GWM = Grundwassermessstelle S = Schöpfprobe P = Pumpprobe (1-2 m u. Grundwasseroberfläche) -= nicht untersucht

Gutachter / Probenehmer / Labor	Untersuchungstermin	Legende
Mull & Partner / SEWA 1993	26.04. und 26.05.1993	>100-fache Überschreitung GFS
Mull & Partner / SEWA 1995	26.06. und 31.07.1995	
?/? (zit. in LZ Umwelttechnik 2004)	10.10.1996	>10-fache Überschreitung GFS
ALA	30.07.1999, 04. und 09.08.2000, 27.08.2001	
Mull & Partner / Analytis 2002	17.04. und 23.08.2002	>1-fache Überschreitung GFS
LZ Umwelttechnik / GEOTAIX 2004	16. und 26.03.2004	
apero	10.09.2004	keine Überschreitung GFS
Analytis	10.11.2005	
Grüning Consulting / UCL 2008	18.08.2008	< Bestimmungsgrenze
agus / apero / SEWA 2010	18.03.2010	
agus / SEWA 2012	21.08.2012	
agus / SEWA 2013	20.03.2013	
agus / SEWA 2013	05.08.2013	
agus / SEWA 2014	13.02.2014	
agus / SEWA 2014	08.04.2014	
agus / SEWA 2014	09.09.2014	
agus / SEWA 2014	24.11.2014	

Tab. B 2-3: Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)

Proben-Nr.	Tiefe (cm)	Charakterisierung / Bemerkungen / organoleptischer Befund	LAK C1-C9	LHKW	1,1,1- Trichlor- ethan	1,1- Dichlor- ethan	ВТЕХ
					mg/kg		
S1-9/1	280-340	Quartär, Benzingeruch	110	<0,025	<0,025	<0,025	0,49
S1-9/2	470-500	Quartär, leichter Benzingeruch	110	<0,025	<0,025	<0,025	0,23
S1-10/1	280-300	Quartär	130	<0,025	<0,025	<0,025	<0,025
S1-10/2	340-380	Quartär / leichter Benzingeruch	300	<0,025	<0,025	<0,025	2,3
S1-13/1	290-300	Quartär	<2,5	0,92	0,66	0,22	-
S1-13/2	380-400	Quartär / starker chemischer Geruch	<2,5	1,8	1,2	0,51	-
S1-14	320-330	Quartär / leichter chemischer Geruch	<2,5	0,56	0,44	0,12	<0,025
S1-15	260-300	Quartär	8,0	<0,025	<0,025	<0,025	0,033
S1-16/1	290-300	Quartär, Benzingeruch, teilweise stark	62	<0,025	<0,025	<0,025	1,7
S1-16/2	350-370	Quartär, Benzingeruch, teilweise stark	410	0,17	<0,025	0,17	5,1
S1-17/1	280-300	Quartär, leichter Benzingeruch	550	<0,025	<0,025	<0,025	3,4
S1-19/1	30-50	Quartär	-	1,1	0,93	0,21	-
S1-19/2	50-100	Quartär	-	1,9	1,5	0,35	-
S1-19/3	100-150	Quartär	-	1,1	0,81	0,27	-
S1-19/4	150-200	Quartär	-	0,40	0,30	0,10	-
S1-19/5	200-250	Quartär	-	2,1	1,4	0,63	-
S1-19/6	250-300	Quartär / chemischer Geruch	-	2,1	1,6	0,36	-
S1-19/7	300-350	Quartär / chemischer Geruch	-	0,31	0,25	0,059	-
S1-19/8	350-400	Quartär / chemischer Geruch	-	<0,025	<0,025	<0,025	-
S1-19/9	400-450	Quartär / leichter chemischer Geruch	-	<0,025	<0,025	<0,025	-
S1-19/10	450-480	Quartär / leichter chemischer Geruch	-	<0,025	<0,025	<0,025	-
S1-20/1	30-80	Quartär, Benzingeruch	-	10,0	10,0	-	0,32
S1-20/2	80-130	Quartär, Benzingeruch	-	12,0	12,0	-	1,3
S1-20/3	130-160	Quartär, Benzingeruch	-	49,0	49,0	-	6,9
S1-20/4	160-200	Quartär, Benzingeruch	-	37,0	37,0	-	2,7
S1-20/5	200-240	Quartär, chemischer Geruch	-	100,0	100,0	-	6,9
S1-20/6	250-300	Quartär, chemischer Geruch	-	130,0	130,0	-	6,3
S1-20/7	300-350	Quartär, chemischer Geruch	-	140,0	140,0	-	14,0
S1-20/8	360-400	Quartär, chemischer Geruch	-	5,0	5,0	-	0,55
S1-20/9	410-490	Quartär	-	0,056	0,056	-	<0,10
S1-21/1	30-140	Quartär	-	1,5	1,4	0,13	-
S1-21/2	140-250	Quartär	-	3,5	3,2	0,23	-
S1-21/3	280-300	Quartär, chemischer Geruch	-	5,0	4,6	0,35	-
S1-21/4	300-350	Quartär	-	0,16	0,16	<0,025	-
S1-21/5	350-400	Quartär	-	0,029	0,029	<0,025	-
S1-22/1	40-140	Quartär	-	0,96	0,78	0,18	-
S1-22/2	140-250	Quartär, chemischer Geruch	-	1,9	1,5	0,35	-
S1-22/3	280-340	Quartär, chemischer Geruch	-	2,3	1,3	0,83	-
S1-22/4	340-390	Quartär, chemischer Geruch	-	0,13	0,084	0,042	-
S1-22/5 390-430		Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	-
Bewertungs	Bewertungsgrundlagen				mg/kg		
		Z 0	-	1	-	-	1
LAGA (2004)		Z 1	-	1	-	-	1
Zuordnungsw Bodenaushub		Z 2	-	1	-	-	1
Bodenaushub		<i>L</i>					<u>'</u>

Tab. B 2-3: Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004), Fortsetzung

Proben-Nr.	Tiefe (cm)	Charakterisierung / Bemerkungen / organoleptischer Befund	LAK C1-C9	LHKW	1,1,1- Trichlor- ethan	1,1- Dichlor- ethan	втех
					mg/kg		
S1-23/1	40-140	Quartär	-	0,19	0,12	0,068	-
S1-23/2	140-250	Quartär	-	0,60	0,37	0,23	-
S1-23/3	290-320	Quartär	-	1,1	0,26	0,71	-
S1-23/4	320-360	Quartär, chemischer Geruch	-	0,88	0,66	0,22	-
S1-23/5	360-410	Quartär	-	0,18	0,15	0,032	-
S1-23/6	410-460	Quartär	-	<0,025	<0,025	<0,025	-
S1-24/1	40-140	Quartär	-	0,042	0,042	-	<0,10
S1-24/2	140-200	Quartär	-	0,21	0,21	-	1,7
S1-24/3	200-250	Quartär, leichter Lösemittelgeruch	-	0,028	0,028	-	<0,10
S1-24/4	250-300	Quartär, leichter Lösemittelgeruch	-	0,070	0,070	-	4,8
S1-24/5	300-350	Quartär, chemischer Geruch	_	0,23	0,23	-	8,5
S1-24/6	350-400	Quartär, chemischer Geruch	_	0,047	0,047	_	<0,10
S1-24/7	400-450	Quartar, chemischer Geruch	-	<0,025	<0,025	_	<0,10
S1-25/1	30-80	Quartar, chemischer Geruch		<0,025	<0.025	-0.00E	9,6
			-	· · · · · ·	-,	<0,025	
S1-25/2	80-140	Quartär, leichter chemischer Geruch	-	<0,025	<0,025	<0,025	4,9
S1-25/3	140-200	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	0,48
S1-25/4	200-250	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	<0,10
S1-25/5	250-300	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	2,4
S1-25/6	310-360	Quartär, leichter chemischer Geruch	-	<0,025	<0,025	<0,025	<0,10
S1-25/7	360-420	Quartär, leichter chemischer Geruch	-	<0,025	<0,025	<0,025	<0,10
S1-25/8	420-500	Quartär	-	<0,025	<0,025	<0,025	<0,10
S1-26/1	30-80	Quartär, leichter Lösemittelgeruch	-	28,25	28,0	0,25	-
S1-26/2	80-130	Quartär, leichter Lösemittelgeruch	-	21,24	21,0	0,24	-
S1-26/3	130-190	Quartär, leichter Lösemittelgeruch	-	46,36	46,0	0,36	-
S1-26/4	190-240	Quartär, leichter chemischer Geruch	-	2,02	1,9	0,12	-
S1-26/5	240-280	Quartär, leichter chemischer Geruch	-	1,43	1,2	0,23	-
S1-26/6	280-350	Quartär, leichter chemischer Geruch	-	0,52	0,37	0,15	-
S1-26/7	350-390	Quartär, leichter chemischer Geruch	-	0,050	0,050	<0,025	-
S1-26/8	390-440	Quartär, leichter chemischer Geruch	-	<0,025	<0,025	<0,025	-
S1-27/1	40-140	Quartär	-	<0,025	<0,025	<0,025	-
S1-27/2	140-240	Quartär	-	<0,025	<0,025	<0,025	-
S1-27/3	240-280	Quartär	-	<0,025	<0,025	<0,025	-
S1-27/4	280-330	Quartär, leichter chemischer Geruch	-	<0,025	<0,025	<0,025	-
S1-27/5	330-390	Quartär	-	<0,025	<0,025	<0,025	-
S1-27/6	390-440	Quartär	-	<0,025	<0,025	<0,025	-
S1-28/1	40-80	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	7,4
S1-28/2	80-130	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	0,61
S1-28/3	130-190	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	17,0
S1-28/4	190-250	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	<0,10
S1-28/5	250-310	Quartär, chemischer Geruch	-	<0,025	<0,025	<0,025	0,37
S1-28/6	310-340	Quartär	-	<0,025	<0,025	<0,025	1,8
S1-28/7	340-440	Quartär	-	<0,025	<0,025	<0,025	<0,10
S1-28/8	440-500	Quartär	-	<0,025	<0,025	<0,025	<0,10
Bewertungsgrundlage					mg/kg		
LACA (2004)		Z 0	-	1	-	-	1
LAGA (2004 Zuordnungsv		Z 1	-	1	-	-	1
Bodenaushu		Z 2	-	1	-	-	1

Tab. B 2-3: Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004), Fortsetzung

Proben- Nr.	Tiefe (cm)	Charakterisierung / Bemerkungen / organoleptischer Befund	LAK C1-C9	LHKW	1,1,1- Trichlor- ethan	1,1- Dichlor- ethan	втех
					mg/kg		
S1-29/1	30-80	Quartär, starker chemischer Geruch	-	0,37	0,37	-	2,9
S1-29/2	80-140	Quartär, starker chemischer Geruch	-	<0,30	<0,025	-	<0,15
S1-29/3	140-190	Quartär, starker chemischer Geruch	-	<0,30	<0,025	-	<0,15
S1-29/4	190-220	Quartär, starker chemischer Geruch	-	<0,30	<0,025	-	<0,15
S1-29/5	220-260	Quartär, starker chemischer Geruch	-	<0,30	<0,025	-	<0,15
S1-29/6	260-310	Quartär, starker chemischer Geruch	-	<0,30	0,14	-	1,7
S1-29/7	310-380	Quartär, chemischer Geruch	-	<0,30	<0,025	-	<0,15
S1-29/8	380-440	Quartär	-	<0,30	<0,025	-	<0,15
S1-29/9	440-500	Quartär	-	<0,30	<0,025	-	<0,15
S1-31/1	30-80	Quartär, muffiger Geruch	-	4,1	4,1	-	<0,10
S1-31/2	80-130	Quartär, muffiger Geruch	-	4,4	4,4	-	0,16
S1-31/3	130-170	Quartär, muffiger Geruch	-	50,0	50,0	-	2,9
S1-31/4	170-210	Quartär, muffiger Geruch	-	4,3	4,3	-	0,16
S1-31/5	210-250	Quartär, chemischer Geruch	-	4,0 3,4	4,0 3,4	-	<0,10
S1-31/6	250-300 300-340	Quartär, chemischer Geruch Quartär, chemischer Geruch	-	3,4	3,0	-	<0,10
S1-31/7 S1-31/8	340-380	Quartar, chemischer Geruch	_	0,51	0,51		<0,10 <0,10
S1-31/8 S1-31/9	380-400	Quartar, chemischer Geruch	_	0,31	0,51		<0,10
S1-31/9 S1-31/10	400-440	Quartar, chemischer Geruch	_	<0,025	<0,025		<0,10
S1-31/11	440-470	Quartar	_	0,081	0,081	-	<0,10
S1-32b/1	40-100	Quartär, chemischer Geruch	_	150,0	150,0	-	7,3
S1-32b/2	100-160	Quartar, chemischer Geruch	-	43,0	43,0	-	1,4
S1-32b/3	160-220	Quartär, chemischer Geruch	-	240,0	240,0	-	5,5
S1-32b/4	220-270	Quartär, chemischer Geruch	-	41,0	41,0	-	0,42
S1-32b/5	270-310	Quartär, chemischer Geruch	-	250,0	250,0	-	2,0
S1-32b/6	310-370	Quartär, chemischer Geruch	-	0,21	0,21	-	<0,15
S1-32b/7	370-400	Quartär, chemischer Geruch	-	85,0	85,0	-	0,87
S1-32b/8	400-420	Quartär, chemischer Geruch	-	4,3	4,3	-	<0,15
S1-32b/9	420-450	Quartär	-	0,32	0,32	•	<0,15
S1-33b/1	40-100	Quartär, leichter chemischer Geruch	-	13,17	13,0	0,17	•
S1-33b/2	100-160	Quartär, leichter chemischer Geruch	-	240,85	240,0	0,85	-
S1-33b/3	160-230	Quartär, chemischer Geruch	-	110,82	110,0	0,82	-
S1-33b/4	230-260	Quartär, chemischer Geruch	-	411,8	410,0	1,8	-
S1-33b/5	260-300	Quartär, chemischer Geruch	-	453,1	450,0	3,1	-
S1-33b/6	300-370	Quartär, chemischer Geruch	-	292,2	290,0	2,2	-
S1-33b/7	370-430	Quartär, chemischer Geruch	-	1,84	1,6	0,24	-
S1-33b/8	430-450	Quartär	-	1,641	1,6	0,041	-
Bewertungs	grundlage			mg/kg			
LAGA (2004)		Z 0	-	1	-	-	1
Zuordnungsv		Z 1	-	1	-		1
Bodenaushul	b	Z 2	-	1	-	-	1
_			•	•	•		

Anlage B 3

Beprobungsprotokolle und Prüfberichte SEWA Laborbetriebsgesellschaft m.b.H., Essen

Berichts-Nr.	Berichts-Datum	Untersuchungsumfang
AU 37265	03.05.2011	11 Feststoffproben, 4 Wasserproben (direct push)
AU 37884	21.06.2011	22 Feststoffproben (Methanol-Headspace)
AU 38077	22.07.2011	99 Feststoffproben (Methanol-Headspace), 5 Wasserproben (direct push)

DAP-PL-1236.00

SEWA Laborbetriebsgesellschaft m.b.H Kruppstraße 86 45145 Essen

Stadt Mönchengladbach - Fachbereich Umweltschutz und Entsorgung - Abteilung Bodenschutz z.Hd. Herr Volmer Rathaus Rheydt

Betrifft: Untersuchungsbericht AU37265

hier: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in Mönchengladbach-Lürrip. S 1

Sehr geehrter Herr Volmer,

41236 Mönchengladbach

gemäß Ihrem Auftrag vom 15.04.2011 führten wir für Sie chemische Untersuchungen durch. Der Untersuchungsbericht liegt diesem Schreiben als Anlage bei.

Für Rückfragen stehen wir Ihnen jederzeit gerne zur Verfügung und verbleiben

mit freundlichen Grüßen

Essen, den 03.05.2011

Andrews ferm

Andreas Görner

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Kruppstr. 86 45145 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU37265
Berichtsdatum: 03.05.2011

Projekt: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip. S 1

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 11.04.2011

Probeneingang: 15.04.2011

Untersuchungszeitraum: 15.04.2011 — 03.05.2011

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 11 Feststoffproben

4 Wasserproben

Andreas Görner Laborleitung

Suchreas farm

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37265 - 1	S1-1/1			
37265 - 2	S1-2/1			
37265 - 3	S1-3/1			
37265 - 4	S1-3/2			
	37265 - 1	37265 - 2	37265 - 3	3726

1,1-Dichlorethen	LAK	mg/kg	<1,0	<1,0	9,2	38
1,1-Dichlorethan						
1,1-Dichlorethen	LHKW+VC					
Dichlormethan	1,1-Dichlorethan	mg/kg	0,059	0,14	<0,010	<0,010
trans-1,2-Dichlorethen mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan mg/kg <0,010 <0,010 <0,010 <0,010 1,1,1-Trichlorethan mg/kg 0,11 0,069 <0,010	trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan mg/kg 0,11 0,069 <0,010 <0,0 Tetrachlormethan mg/kg <0,010	cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan mg/kg <0.010 <0.010 <0,010 <0.010 Trichlorethen mg/kg <0.010	Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <	1,1,1-Trichlorethan	mg/kg	0,11	0,069	<0,010	<0,010
1,1,2-Trichlorethan mg/kg <0,010 <0,010 <0,010 Tetrachlorethen mg/kg <0,010	Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen mg/kg <0,010 <0,010 <0,010 <0,010 Chlorbenzol mg/kg <0,010	Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <1,1,1,2-Tetrachlorethan mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0	1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan mg/kg <0,010 <0,010 <0,010 <0,01 Vinylchlorid mg/kg <0,010	Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid mg/kg <0,010 <0,010 <0,010 <0,01 1,2-Dichlorethan mg/kg <0,010	Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
AKW mg/kg 0,17 0,21 n. berechenbar n. berechenbar AKW Benzol mg/kg <0,010	Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
AKW Benzol mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00	1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Benzol mg/kg <0,010 <0,010 <0,010 Toluol mg/kg <0,010	Summe LHKW	mg/kg	0,17	0,21	n. berechenbar	n. berechenbar
Toluol mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 </td <td>AKW</td> <td></td> <td></td> <td></td> <td></td> <td></td>	AKW					
Ethylbenzol mg/kg <0,010 <0,010 <0,010 <0,01 m/p-Xylol mg/kg <0,010	Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
m/p-Xylol mg/kg <0,010 <0,010 <0,010 0.1 Styrol mg/kg <0,010	Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010
Styrol mg/kg <0,010 <0,010 <0,010 <0,010 o-Xylol mg/kg <0,010	Ethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol mg/kg <0,010 <0,010 <0,010 0,1 Isopropylbenzol mg/kg <0,010	m/p-Xylol	mg/kg	<0,010	<0,010	<0,010	0,16
Isopropylbenzol mg/kg <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0	Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
Propylbenzol mg/kg <0,010 <0,010 <0,010 <0,01 1,3,5-Trimethylbenzol mg/kg <0,010	o-Xylol	mg/kg	<0,010	<0,010	<0,010	0,17
1,3,5-Trimethylbenzol mg/kg <0,010 <0,010 0,048 0,5 1,2,4-Trimethylbenzol mg/kg <0,010	Isopropylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,4-Trimethylbenzol mg/kg <0,010 <0,010 0,29 1,4 1,2,3-Trimethylbenzol mg/kg <0,010	Propylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3-Trimethylbenzol mg/kg <0,010 <0,010 0,16 0,9 Indan mg/kg <0,010	1,3,5-Trimethylbenzol	mg/kg	<0,010	<0,010	0,048	0,51
Indan mg/kg <0,010 <0,010 <0,010 0,14 Inden mg/kg <0,010	1,2,4-Trimethylbenzol	mg/kg	<0,010	<0,010	0,29	1,4
Inden mg/kg <0,010 <0,010 <0,010 <0,010 1,2,3,4-Tetralin mg/kg <0,010	1,2,3-Trimethylbenzol	mg/kg	<0,010	<0,010	0,16	0,91
1,2,3,4-Tetralin mg/kg <0,010 <0,010 0,094 0,2 Naphthalin mg/kg <0,010	Indan	mg/kg	<0,010	<0,010	<0,010	0,14
Naphthalin mg/kg <0,010 <0,010 <0,010 0,1 2-Methylnaphthalin mg/kg <0,010	Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
2-Methylnaphthalin mg/kg <0,010 <0,010 0,056 0,1 1-Methylnaphthalin mg/kg <0,010	1,2,3,4-Tetralin	mg/kg	<0,010	<0,010	0,094	0,27
1-Methylnaphthalin mg/kg <0,010 <0,010 0,043 0,0	Naphthalin	mg/kg	<0,010	<0,010	<0,010	0,18
	2-Methylnaphthalin	mg/kg	<0,010	<0,010	0,056	0,17
Summe BTEX mg/kg n. berechenbar n. berechenbar n. berechenbar 0,3	1-Methylnaphthalin	mg/kg	<0,010	<0,010	0,043	0,091
	Summe BTEX	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	0,33

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37265 - 5	S1-3/3			
37265 - 6	S1-3/4			
37265 - 7	S1-4/1			
37265 - 8	S1-5/1			
	37265 - 5	37265 - 6	37265 - 7	3726

LAK	mg/kg	45	8,8	<1,0	<1,0
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0.010	<0,010	<0.010	<0.010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010
Ethylbenzol	mg/kg	0,090	<0,010	<0,010	<0,010
m/p-Xylol	mg/kg	0,35	<0,010	<0,010	<0,010
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	0,28	<0,010	<0,010	<0,010
Isopropylbenzol	mg/kg	0,13	<0,010	<0,010	<0,010
Propylbenzol	mg/kg	0,30	0,011	<0,010	<0,010
1,3,5-Trimethylbenzol	mg/kg	0,63	0,050	<0,010	<0,010
1,2,4-Trimethylbenzol	mg/kg	1,7	0,23	<0,010	<0,010
1,2,3-Trimethylbenzol	mg/kg	0,98	0,17	<0,010	<0,010
Indan	mg/kg	0,16	0,022	<0,010	<0,010
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	0,27	0,23	<0,010	<0,010
Naphthalin	mg/kg	0,25	0,19	<0,010	<0,010
2-Methylnaphthalin	mg/kg	0,15	0,28	<0,010	<0,010
1-Methylnaphthalin	mg/kg	0,083	0,17	<0,010	<0,010

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
37265 - 9	S1-6/1			
37265 - 10	S1-7/1			
37265 - 11	S1-8/1	S1-8/1		
37265 - 12	S1-3			
	37265 - 9	37265 - 10	37265 - 11	3726

LAK	mg/kg	25	26	60
LHKW+VC				
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar
Sullille Li IIVV	ilig/kg	n. berechenbar	n. berechenbar	II. Derechenbar
AKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar
	mg/kg	<0,010	<0,010	<0,010
AKW				
AKW Benzol	mg/kg	<0,010	<0,010	<0,010
AKW Benzol Toluol	mg/kg mg/kg	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010
AKW Benzol Toluol Ethylbenzol	mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010	<0,010 <0,010 <0,010	<0,010 <0,010 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol	mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 0,40
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol	mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 0,40 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 0,40 <0,010 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 0,40 <0,010 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,015	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,010	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010 0,94
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,055 0,083	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,26 0,94	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010 <0,017
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,25 0,083 0,55	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,26 0,94 0,65	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010 1,7 1,1
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan	mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,25 0,083 0,55 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,066 0,94 0,65 0,11	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010 1,7 1,1 0,27
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden	mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,25 0,083 0,55 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,065 0,11 <0,010	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010 1,7 1,1 0,27 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,25 0,083 0,55 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,26 0,94 0,65 0,11 <0,010 0,36 0,51 0,52	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010 0,94 1,7 1,1 0,27 <0,010 0,27
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin	mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,25 0,083 0,55 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,26 0,94 0,65 0,11 <0,010 0,36 0,51	<0,010 <0,010 <0,010 0,40 <0,010 <0,010 <0,010 <0,010 0,94 1,7 1,1 0,27 <0,010 0,27 0,52

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37265 - 9	S1-6/1			
37265 - 10	S1-7/1			
37265 - 11	S1-8/1			
37265 - 12	S1-3			
	37265 - 9	37265 - 10	37265 - 11	3726

• Untersuchungen im Wasser

LAK	μg/l	40000
LHKW+VC		
1,1-Dichlorethan	μg/l	110
1,1-Dichlorethen	μg/l	<5,0
1,2-Dichlorethan	μg/l	<5,0
Dichlormethan	μg/l	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0
Trichlormethan	μg/l	<0,50
1,1,1-Trichlorethan	μg/l	<0,50
Tetrachlormethan	μg/l	<0,50
Trichlorethen	μg/l	<0,50
1,1,2-Trichlorethan	μg/l	<5,0
Tetrachlorethen	μg/l	<0,50
Chlorbenzol	μg/l	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50
Vinylchlorid	μg/l	8,2
Summe LHKW	μg/l	120
AKW		
Benzol	μg/l	2,2
Toluol	μg/l	14
Ethylbenzol	μg/l	120
m/p-Xylol	μg/l	350
o-Xylol	μg/l	220
Styrol	μg/l	<5,0
Isopropylbenzol	μg/l	110
Propylbenzol	μg/l	280
1,3,5-Trimethylbenzol	μg/l	530
1,2,4-Trimethylbenzol	μg/l	1500
1,2,3-Trimethylbenzol	μg/l	920
Indan	μg/l	<5,0
Inden	μg/l	<5,0
1,2,3,4-Tetralin	μg/l	420
Naphthalin	μg/l	310
2-Methylnaphthalin	μg/l	290
1-Methylnaphthalin	μg/l	200
Summe BTEX	μg/l	710

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37265 - 13	S1-4	
37265 - 14	S1-7	
37265 - 15	S1-8	

37265 - 13	37265 - 14	37265 - 15
31203 - 13	31203 - 14	31203 - 13

• Untersuchungen im Wasser

LAK	μg/l	300	1200	40000
LHKW+VC				
1,1-Dichlorethan	μg/l	110	6,3	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<2,5	<2,5	<2,5
Summe LHKW	μg/l	110	6,3	n. berechenbar
AKW				
Benzol	μg/l	1,7	1,5	0,75
Toluol	μg/l	8,4	8,1	1,8
Ethylbenzol	μg/l	28	47	99
m/p-Xylol	μg/l	83	170	500
o-Xylol	μg/l	61	8,1	8,5
Styrol	μg/l	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	17	30	90
Propylbenzol	μg/l	31	61	200
1,3,5-Trimethylbenzol	μg/l	73	160	720
1,2,4-Trimethylbenzol	μg/l	330	620	1900
1,2,3-Trimethylbenzol	μg/l	240	460	1200
Indan	μg/l	39	93	260
Inden	μg/l	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	150	260	540
Naphthalin	μg/l	190	440	670
2-Methylnaphthalin	μg/l	130	310	1200
1-Methylnaphthalin	μg/l	110	290	880
Summe BTEX	μg/l	180	230	610

Untersuchungsmethoden

Untersuchungen im Feststoff

LAK DIN ISO 22155

LHKW+VC DIN ISO 22155

AKW analog DIN 38407 F9-2

• Untersuchungen im Wasser

LAK analog DIN 38407 F9

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

DAP-PL-1236.00

SEWA Laborbetriebsgesellschaft m.b.H Kruppstraße 86 45145 Essen

Stadt Mönchengladbach - Fachbereich Umweltschutz und Entsorgung - Abteilung Bodenschutz z.Hd. Herr Volmer Rathaus Rheydt 41236 Mönchengladbach

Betrifft: Untersuchungsbericht AU37884

hier: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in Mönchengladbach-Lürrip. S 1

Sehr geehrter Herr Volmer,

gemäß Ihrem Auftrag vom 16.06.2011 führten wir für Sie chemische Untersuchungen durch. Der Untersuchungsbericht liegt diesem Schreiben als Anlage bei.

Für Rückfragen stehen wir Ihnen jederzeit gerne zur Verfügung und verbleiben

mit freundlichen Grüßen

Essen, den 21.06.2011

Andrews ferm

Andreas Görner

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Kruppstr. 86 45145 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU37884
Berichtsdatum: 21.06.2011

Projekt: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip. S 1

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 16.06.2011

Probeneingang: 16.06.2011

Untersuchungszeitraum: 16.06.2011 — 21.06.2011

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 22 Feststoffproben

Andreas Görner

Andrews ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37884 - 1	S1-19/1	
37884 - 2	S1-19/2	
37884 - 3	S1-19/3	
37884 - 4	S1-19/4	

37884 - 1 37884 - 2 37884 - 3 37884 - 4

1,1-Dichlorethan	mg/kg	0,21	0,35	0,27	0,10
1,1-Dichlorethen	mg/kg	<0,025	0,025	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	0,93	1,5	0,81	0,30
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	1,1	1,9	1,1	0,40

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37884 - 5	S1-19/5	
37884 - 6	S1-19/6	
37884 - 7	S1-19/7	
37884 - 8	S1-19/8	

37884 - 5 37884 - 6 37884 - 7 37884 - 8

mg/kg	0,63	0,36	0,059	<0,025
mg/kg	0,091	0,092	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	1,4	1,6	0,25	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	<0,025	<0,025	<0,025	<0,025
mg/kg	2,1	2,1	0,31	n. berechenbar
	mg/kg	mg/kg 0,091 mg/kg <0,025 mg/kg <0,025 mg/kg <0,025 mg/kg <0,025 mg/kg <0,025 mg/kg 1,4 mg/kg <0,025	mg/kg 0,091 0,092 mg/kg <0,025	mg/kg 0,091 0,092 <0,025

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37884 - 9	S1-19/9	
37884 - 10	S1-19/10	
37884 - 11	S1-9/1	
37884 - 12	S1-9/2	
	25004 0 25004 1	27004 11 2700

37884 - 9 37884 - 10 37884 - 11 37884 - 12

• Untersuchungen im Feststoff

LAK	mg/kg			110	110
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0.025	<0.025	<0.025	<0.025
1.1-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenba
AKW					
Benzol	mg/kg			<0,025	<0,025
Toluol	mg/kg			<0,025	<0,025
Ethylbenzol	mg/kg			0,059	<0,025
m/p-Xylol	mg/kg			0,43	0,23
Styrol	mg/kg			<0,025	<0,025
o-Xylol	mg/kg			<0,025	<0,025
Isopropylbenzol	mg/kg			0,28	0,13
Propylbenzol	mg/kg			0,73	0,29
1,3,5-Trimethylbenzol	mg/kg			1,5	0,65
1,2,4-Trimethylbenzol	mg/kg			5,8	3,0
1,2,3-Trimethylbenzol	mg/kg			2,8	1,5
Indan	mg/kg			0,47	0,26
Inden	mg/kg			<0,025	<0,025
1,2,3,4-Tetralin	mg/kg			2,2	1,3
Naphthalin	mg/kg			1,5	1,3
2-Methylnaphthalin	mg/kg			1,9	0,90
1-Methylnaphthalin	mg/kg			1,4	0,79
Summe BTEX	mg/kg			0,49	0,23

37884 - 16

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37884 - 13	S1-10/1	
37884 - 14	S1-10/2	
37884 - 15	\$1-13/1	
37884 - 16	\$1-13/2	

37884 - 13 37884 - 14 37884 - 15

• Untersuchungen im Feststoff

LAIZ		100	000	0.5	0.5
LAK	mg/kg	130	300	<2,5	<2,5
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,025	<0,025	0,22	0,51
1,1-Dichlorethen	mg/kg	<0,025	<0,025	0,042	0,084
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	0,66	1,2
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	0,92	1,8
AKW					
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Toluol	mg/kg	<0,025	<0,025	<0,025	<0,025
Ethylbenzol	mg/kg	<0,025	0,49	<0,025	<0,025
m/p-Xylol	mg/kg	<0,025	1,1	<0,025	<0,025
Styrol	mg/kg	<0,025	<0,025	<0,025	<0,025
o-Xylol	mg/kg	<0,025	0,70	<0,025	<0,025
Isopropylbenzol	mg/kg	0,027	1,0	<0,025	<0,025
Propylbenzol	mg/kg	0,073	2,9	<0,025	<0,025
1,3,5-Trimethylbenzol	mg/kg	<0,025	4,7	<0,025	<0,025
1,2,4-Trimethylbenzol	mg/kg	0,20	13	0,045	0,036
1,2,3-Trimethylbenzol	mg/kg	<0,025	7,2	<0,025	<0,025
Indan	mg/kg	<0,025	1,7	<0,025	<0,025
Inden	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2,3,4-Tetralin	mg/kg	<0,025	3,2	<0,025	<0,025
Naphthalin	mg/kg	<0,025	1,5	0,025	<0,025
2-Methylnaphthalin	mg/kg	0,033	1,4	0,027	<0,025
1-Methylnaphthalin	mg/kg	0,63	2,7	0,045	<0,025
Summe BTEX	mg/kg	n. berechenbar	2,3	n. berechenbar	n. berechenba

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37884 - 17	S1-14/1	
37884 - 18	S1-14/2	
37884 - 19	S1-15/1	
37884 - 20	S1-16/1	

• Untersuchungen im Feststoff

LAK	mg/kg	<2,5	<2,5	8,0	62
LHKW+VC					
1,1-Dichlorethan	mg/kg	0,12	0,050	<0,025	0,039
1,1-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	0,44	0,35	<0,025	<0,025
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	0,56	0,40	n. berechenbar	0,039
AKW					
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Toluol	mg/kg	<0,025	<0,025	<0,025	<0,025
Ethylbenzol	mg/kg	<0,025	<0,025	<0,025	0,35
m/p-Xylol	mg/kg	<0,025	<0,025	0,033	1,3
Styrol	mg/kg	<0,025	<0,025	<0,025	<0,025
o-Xylol	mg/kg	<0,025	<0,025	<0,025	<0,025
Isopropylbenzol	mg/kg	<0,025	<0,025	<0,025	0,36
Propylbenzol	mg/kg	<0,025	<0,025	0,048	0,93
1,3,5-Trimethylbenzol	mg/kg	<0,025	<0,025	0,082	2,0
1,2,4-Trimethylbenzol	mg/kg	0,027	0,042	0,39	8,4
1,2,3-Trimethylbenzol	mg/kg	<0,025	<0,025	0,22	4,6
Indan	mg/kg	<0,025	<0,025	0,047	0,68
Inden	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2,3,4-Tetralin	mg/kg	<0,025	<0,025	0,20	3,4
Naphthalin	mg/kg	<0,025	<0,025	0,13	3,7
2-Methylnaphthalin	mg/kg	<0,025	<0,025	0,22	5,2
1-Methylnaphthalin	mg/kg	<0,025	<0,025	0,16	3,3
Summe BTEX	mg/kg	n. berechenbar	n. berechenbar	0,033	1,7

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37884 - 21	S1-16/2	
37884 - 22	S1-17/1	

37884 - 21	37884 - 22
3/004-21	3/004 - 22

• Untersuchungen im Feststoff

LAK	mg/kg	410	550
LHKW+VC			
1,1-Dichlorethan	mg/kg	0,17	<0,025
1,1-Dichlorethen	mg/kg	<0.025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025
trans-1.2-Dichlorethen	mg/kg	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0.025	<0.025
Trichlormethan	mg/kg	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	<0.025	<0,025
Tetrachlormethan	mg/kg	<0,025	<0,025
Trichlorethen	mg/kg	<0.025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0.025
Tetrachlorethen	mg/kg	<0.025	<0.025
Chlorbenzol	mg/kg	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025
Summe LHKW	mg/kg	0,17	n. berechenbar
AKW			
Benzol	mg/kg	<0,025	<0,025
Toluol	mg/kg	<0,025	<0,025
Ethylbenzol	mg/kg	0,87	0,80
m/p-Xylol	mg/kg	4,2	2,6
Styrol	mg/kg	<0,025	<0,025
o-Xylol	mg/kg	<0,025	<0,025
Isopropylbenzol	mg/kg	1,5	1,6
Propylbenzol	mg/kg	4,1	4,6
1,3,5-Trimethylbenzol	mg/kg	7,7	9,1
1,2,4-Trimethylbenzol	mg/kg	32	32
1,2,3-Trimethylbenzol	mg/kg	17	16
Indan	mg/kg	2,7	3,0
Inden	mg/kg	<0,025	<0,025
1,2,3,4-Tetralin	mg/kg	8,1	10
Naphthalin	mg/kg	9,2	13
2-Methylnaphthalin	mg/kg	9,8	22
1-Methylnaphthalin	mg/kg	6,0	16
Summe BTEX	mg/kg	5,1	3,4

Die Untersuchungsergebnisse be	eziehen sich auf die Tro	ckensubstanz.
Untersuchungsbericht: LAB37884 vom 21.06.2011 Mönchengladbach-Lürrip. S 1	Projekt:014.060.010 / 5431.120; REM	IE, ürriper Str. 400 in

Untersuchungsmethoden

Untersuchungen im Feststoff

LAK DIN ISO 22155

LHKW+VC DIN ISO 22155

AKW analog DIN 38407 F9-2

DAP-PL-1236.00

SEWA Laborbetriebsgesellschaft m.b.H Kruppstraße 86 45145 Essen

Stadt Mönchengladbach - Fachbereich Umweltschutz und Entsorgung - Abteilung Bodenschutz z.Hd. Herr Volmer Rathaus Rheydt 41236 Mönchengladbach

Betrifft: Untersuchungsbericht AU38077

hier: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in Mönchengladbach-Lürrip. S 1

Sehr geehrter Herr Volmer,

gemäß Ihrem Auftrag vom 04.07.2011 führten wir für Sie chemische Untersuchungen durch. Der Untersuchungsbericht liegt diesem Schreiben als Anlage bei.

Für Rückfragen stehen wir Ihnen jederzeit gerne zur Verfügung und verbleiben

mit freundlichen Grüßen

Essen, den 22.07.2011

Worse fre

Werner Buse

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Kruppstr. 86 45145 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU38077
Berichtsdatum: 22.07.2011

Projekt: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip. S 1

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 29.03.2011

Probeneingang: 04.07.2011

Untersuchungszeitraum: 04.07.2011 — 22.07.2011

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 99 Feststoffproben

5 Wasserproben

Werner Buse

Weres fire

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung	Ihre Probenbezeichnung		
38077 - 1	20/1			
38077 - 2	20/2			
38077 - 3	20/3			
38077 - 4	20/4			
	38077 - 1	38077 - 2	38077 - 3	380

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	10	12	49	37
Summe BTEX	mg/kg	0,32	1,3	6,9	2,7
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	10	12	49	37
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW, C2-Benzole	KW, C2-Benzole	KW, C2-Benzole	KW, C2-Benzole

Labornummer	Ihre Probenbezeichnung	Ihre Probenbezeichnung		
38077 - 5	20/5			
38077 - 6	20/6			
38077 - 7	20/7			
38077 - 8	20/8			
	38077 - 5	38077 - 6	38077 - 7	380

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	100	130	140	5,0
Summe BTEX	mg/kg	6,9	6,3	14	0,55
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	100	130	140	5,0
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW, C2-Benzole	KW, C2-Benzole	KW, C2-Benzole	KW, C2-Benzole

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 9	20/9	
38077 - 10	21/1	
38077 - 11	21/2	
38077 - 12	21/3	

38077 - 9	38077 - 10	38077 - 11	38077 - 12

• Untersuchungen im Feststoff

		/DCE

1,1-Dichlorethan	mg/kg	0,13	0,23	0,35
1,1-Dichlorethen	mg/kg	<0,025	0,041	0,058
Dichlormethan	mg/kg	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	1,4	3,2	4,6
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	1,5	3,5	5,0

1,1,1-Trichlorethan	mg/kg	0,056
Summe BTEX	mg/kg	<0,10
Benzol	mg/kg	<0,025
Summe LHKW	mg/kg	<0,10
Trichlorethen	mg/kg	<0,025
Tetrachlorethen	mg/kg	<0,025
sonstige Auffälligkeiten	ohne	KW, C2-Benzole

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 13	21/4	
38077 - 14	21/5	
38077 - 15	22/1	
38077 - 16	22/2	

38077 - 13 38077 - 14 38077 - 15 38077 - 16

• Untersuchungen im Feststoff

1,1-Dichlorethan	mg/kg	<0,025	<0,025	0,18	0,35
1,1-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	0,16	0,029	0,78	1,5
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	0,16	0,029	0,96	1,9

Labornummer	Ihre Probenbezeichnung	Ihre Probenbezeichnung		hme
38077 - 17	22/3			
38077 - 18	22/4			
38077 - 19	22/5			
38077 - 20	23/1			
	38077 - 17	38077 - 18	38077 - 19	3807

• Untersuchungen im Feststoff

1,1-Dichlorethan	mg/kg	0,83	0,042	<0,025	0,068
1,1-Dichlorethen	mg/kg	0,12	<0,025	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	1,3	0,084	<0,025	0,12
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	2,3	0,13	n. berechenbar	0,19

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 21	23/2	
38077 - 22	23/3	
38077 - 23	23/4	
38077 - 24	23/5	

38077 - 21 38077 - 22 38077 - 23 38077 - 24

• Untersuchungen im Feststoff

1,1-Dichlorethan	mg/kg	0,23	0,71	0,22	0,032
1,1-Dichlorethen	mg/kg	<0,025	0,12	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	0,37	0,26	0,66	0,15
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	0,60	1,1	0,88	0,18

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 25	23/6	
38077 - 26	24/1	
38077 - 27	24/2	
38077 - 28	24/3	

38077 - 25 38077 - 26 38077 - 27 38077 - 28

• Untersuchungen im Feststoff

LHKW+VC+DCA/DCE

1 1 Diablarathan	ma/ka	-0.025
1,1-Dichlorethan	mg/kg	<0,025
1,1-Dichlorethen	mg/kg	<0,025
Dichlormethan	mg/kg	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025
Trichlormethan	mg/kg	<0,025
1,1,1-Trichlorethan	mg/kg	<0,025
Tetrachlormethan	mg/kg	<0,025
Trichlorethen	mg/kg	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025
Tetrachlorethen	mg/kg	<0,025
Chlorbenzol	mg/kg	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025
Vinylchlorid	mg/kg	<0,025
1,2-Dichlorethan	mg/kg	<0,025
Summe LHKW	mg/kg	n. berechenbar

1,1,1-Trichlorethan	mg/kg	0,042	0,21	0,028
Summe BTEX	mg/kg	<0,10	1,7	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,10	0,21	<0,10
Trichlorethen	mg/kg	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW	KW, C2-Benzole	KW

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 29	24/4	
38077 - 30	24/5	
38077 - 31	24/6	
38077 - 32	24/7	

38077 - 29 38077 - 30 38077 - 31 38077 - 32

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	0,070	0,23	0,047	<0,025
Summe BTEX	mg/kg	4,8	8,5	<0,10	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,10	0,23	<0,10	<0,10
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW, C2-Benzole	KW, C2-Benzole	KW	KW

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
38077 - 33	26/1			
38077 - 34	26/2			
38077 - 35	26/3			
38077 - 36	26/4			
	38077 - 33	38077 - 34	38077 - 35	3807

• Untersuchungen im Feststoff

1,1-Dichlorethan	mg/kg	0,25	0,24	0,36	0,12
1,1-Dichlorethen	mg/kg	0,056	<0,025	0,075	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	28	21	46	1,9
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	28	21	46	2,0

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
38077 - 37	26/5			
38077 - 38	26/6			
38077 - 39	26/7			
38077 - 40	26/8			
	38077 - 37	38077 - 38	38077 - 39	3807

• Untersuchungen im Feststoff

1,1-Dichlorethan	mg/kg	0,23	0,15	<0,025	<0,025
1,1-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	1,2	0,37	0,050	<0,025
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	1,4	0,52	0,050	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 41	27/1	
38077 - 42	27/2	
38077 - 43	27/3	
38077 - 44	27/4	

38077 - 41 38077 - 42 38077 - 43 38077 - 44

• Untersuchungen im Feststoff

LIN(II+10+DOA/DOL					
1,1-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 45	27/5	
38077 - 46	27/6	
38077 - 47	29/1	
38077 - 48	29/2	

38077 - 45 38077 - 46 38077 - 47 38077 - 48

• Untersuchungen im Feststoff

	/C+		

1,1-Dichlorethan	mg/kg	<0,025	<0,025
1,1-Dichlorethen	mg/kg	<0,025	<0,025
Dichlormethan	mg/kg	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	<0,025	<0,025
Tetrachlormethan	mg/kg	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar

1,1,1-Trichlorethan	mg/kg	0,37	<0,025
Summe BTEX	mg/kg	2,9	<0,15
Benzol	mg/kg	<0,025	<0,025
Summe LHKW	mg/kg	0,37	<0,30
Trichlorethen	mg/kg	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW, C3/C4-Benzole	keine

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 49	29/3	
38077 - 50	29/4	
38077 - 51	29/5	
38077 - 52	29/6	

38077 - 49 38077 - 50 38077 - 51 38077 - 52

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	0,14
Summe BTEX	mg/kg	<0,15	<0,15	<0,15	1,7
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,30	<0,30	<0,30	<0,30
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	keine	keine	KW, C3/C4-Benzolek	(W, C3/C4-Benzole

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
38077 - 53	29/7			
38077 - 54	29/8			
38077 - 55	29/9			
38077 - 56	32b/1			
	38077 - 53	38077 - 54	38077 - 55	3807

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	150
Summe BTEX	mg/kg	<0,15	<0,15	<0,15	7,3
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,30	<0,30	<0,30	150
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	0,034
sonstige Auffälligkeiten	ohne	keine	keine	keine	KW, C3/C4-Benzole

Labornummer	Ihre Probenbezeichnung		Probenentn	ahme
38077 - 57	32b/2			
38077 - 58	32b/3			
38077 - 59	32b/4			
38077 - 60	32b/5			
	38077 - 57	38077 - 58	38077 - 59	38077 - 60

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	43	240	41	250
Summe BTEX	mg/kg	1,4	5,5	0,42	2,0
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	43	240	41	250
Trichlorethen	mg/kg	<0,025	0,030	<0,025	0,026
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW, C3/C4-Benzole	KW, C3/C4-Benzolel	KW, C3/C4-Benzole	KW, C3/C4-Benzole

38077 - 61 32b/6 38077 - 62 32b/7 38077 - 63 32b/8	Labornummer	Ihre Probenbezeichnung	Probenentnahme
	38077 - 61	32b/6	
38077 - 63 32b/8	38077 - 62	32b/7	
	38077 - 63	32b/8	
38077 - 64 32b/9	38077 - 64	32b/9	

38077 - 61 38077 - 62 38077 - 63 38077 - 64

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	0,21	85	4,3	0,32
Summe BTEX	mg/kg	<0,15	0,87	<0,15	<0,15
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	0,21	85	4,3	0,32
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	keine	KW, C3/C4-Benzolek	(W, C3/C4-Benzole	keine

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 65	33b/1	
38077 - 66	33b/2	
38077 - 67	33b/3	
38077 - 68	33b/4	

38077 - 65 38077 - 66 38077 - 67 38077 - 68

• Untersuchungen im Feststoff

1,1-Dichlorethan	mg/kg	0,17	0,85	0,82	1,8
1,1-Dichlorethen	mg/kg	0,040	0,23	0,22	0,83
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	13	240	110	410
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	0,033
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	0,035	<0,025
Summe LHKW	mg/kg	13	240	110	410

Labornummer	Ihre Probenbezeichnung	Probenentna	hme	
38077 - 69	33b/5	33b/5		
38077 - 70	33b/6			
38077 - 71	33b/7			
38077 - 72	33b/8			
	38077 - 69	38077 - 70	38077 - 71	3807

• Untersuchungen im Feststoff

LHKW+VC+DCA/DCE

1,1-Dichlorethan	mg/kg	3,1	2,2	0,24	0,041
1,1-Dichlorethen	mg/kg	1,9	1,2	0,046	<0,025
Dichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
trans-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
cis-1,2-Dichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1-Trichlorethan	mg/kg	450	290	1,6	1,6
Tetrachlormethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Trichlorethen	mg/kg	0,031	<0,025	<0,025	<0,025
1,1,2-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Chlorbenzol	mg/kg	<0,025	<0,025	<0,025	<0,025
1,1,1,2-Tetrachlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Vinylchlorid	mg/kg	<0,025	<0,025	<0,025	<0,025
1,2-Dichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	460	290	1,9	1,6

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 73	25/1	
38077 - 74	25/2	
38077 - 75	25/3	
38077 - 76	25/4	

38077 - 73 38077 - 74 38077 - 75 38077 - 76

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe BTEX	mg/kg	9,6	4,9	0,48	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,10	<0,10	<0,10	<0,10
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW	KW	KW	KW

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 77	25/5	
38077 - 78	25/6	
38077 - 79	25/7	
38077 - 80	25/8	

38077 - 77 38077 - 78 38077 - 79 38077 - 80

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe BTEX	mg/kg	2,4	<0,10	<0,10	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,10	<0,10	<0,10	<0,10
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW	keine	keine	keine

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 81	28/1	
38077 - 82	28/2	
38077 - 83	28/3	
38077 - 84	28/4	

38077 - 81	38077 - 82	38077 - 83	38077 - 84
50011 01	50011 02	30011 03	50011 01

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe BTEX	mg/kg	7,4	0,61	17	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,10	<0,10	<0,10	<0,10
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	keine	keine	KW	KW

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 85	28/5	
38077 - 86	28/6	
38077 - 87	28/7	
38077 - 88	28/8	

38077 - 85 38077 - 86 38077 - 87 38077 - 88

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	<0,025	0,076	<0,025	<0,025
Summe BTEX	mg/kg	0,37	1,8	<0,10	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	<0,10	<0,10	<0,10	<0,10
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW	KW	keine	keine

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 89	31/1	
38077 - 90	31/2	
38077 - 91	31/3	
38077 - 92	31/4	

38077 - 89	38077 - 90	38077 - 91	38077 - 92

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	4,1	4,4	50	4,3
Summe BTEX	mg/kg	<0,10	0,16	2,9	0,16
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	4,1	4,4	50	4,3
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	KW	KW	KW	KW

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 93	31/5	
38077 - 94	31/6	
38077 - 95	31/7	
38077 - 96	31/8	

38077 - 93 38077 - 94 38077 - 95 38077 - 96

• Untersuchungen im Feststoff

1,1,1-Trichlorethan	mg/kg	4,0	3,4	3,0	0,51
Summe BTEX	mg/kg	<0,10	<0,10	<0,10	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	4,0	3,4	3,0	0,51
Trichlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	keine	keine	keine	keine

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 97	31/9	
38077 - 98	31/10	
38077 - 99	31/11	
38077 - 100	WP 34	

38077 - 97	38077 - 98	38077 - 99	38077 - 100
30011 71	30011 70	30011 77	30011 100

• Untersuchungen im Feststoff

FID/ECD-Monitoring

1,1,1-Trichlorethan	mg/kg	0,10	<0,025	0,081
Summe BTEX	mg/kg	<0,10	<0,10	<0,10
Benzol	mg/kg	<0,025	<0,025	<0,025
Summe LHKW	mg/kg	0,10	<0,10	<0,10
Trichlorethen	mg/kg	<0,025	<0,025	<0,025
Tetrachlorethen	mg/kg	<0,025	<0,025	<0,025
sonstige Auffälligkeiten	ohne	keine	keine	keine

• Untersuchungen im Wasser

1,1,1-Trichlorethan	μg/l	<0,50
Summe BTEX	μg/l	<5,0
Benzol	μg/l	<1,0
Summe LHKW	μg/l	<5,0
Trichlorethen	μg/l	<1,0
Tetrachlorethen	μg/l	<1,0
sonstige Auffälligkeiten	ohne	keine

Labornummer	Ihre Probenbezeichnung	Probenentnahme
38077 - 101	WP 35	
38077 - 102	WP 36	
38077 - 103	WP 37	
38077 - 104	WP 38	

38077 - 101 38077 - 102 38077 - 103 38077 - 104

• Untersuchungen im Wasser

/ECD-I	Manita	win ~

1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Summe BTEX	μg/l	<5,0	<5,0	<5,0	<5,0
Benzol	μg/l	<1,0	<1,0	<1,0	<1,0
Summe LHKW	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlorethen	μg/l	<1,0	<1,0	<1,0	<1,0
Tetrachlorethen	μg/l	<1,0	<1,0	<1,0	<1,0
sonstige Auffälligkeiten	ohne	keine	keine	keine	keine

Untersuchungsmethoden

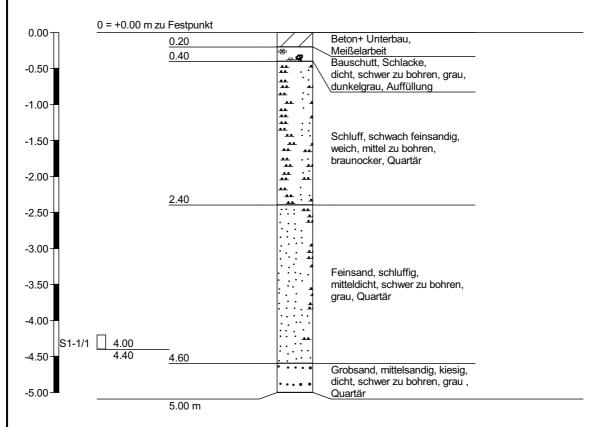
Untersuchungen im Feststoff

LHKW+VC+DCA/DCE DIN ISO 22155

FID/ECD-Monitoring DIN ISO 22155

Untersuchungen im Wasser

FID/ECD-Monitoring DIN 38407 F9-1

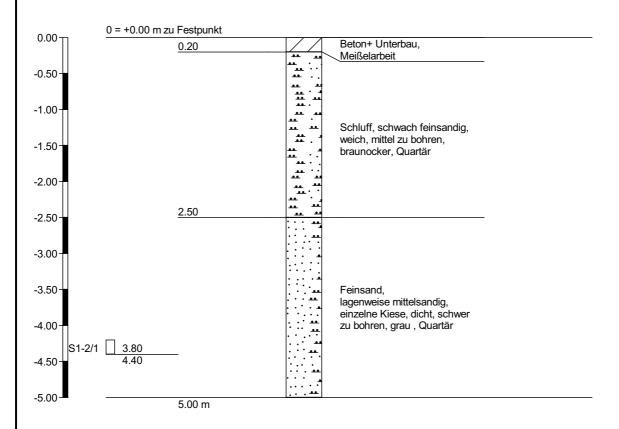


Anlage B 4

Bohrprofile und Schichtenverzeichnisse der Rammkernsondierungen

Zeichnerische Darstellung von Bohrprofilen	Anlage:	
nach DIN 4023	Datum: 16.02.2011	
Projekt: Hallen Mönchengladbach	Projektnummer:	
Bohrung/Schurf: RKS S1-1	Bearb.: von der Bruck	

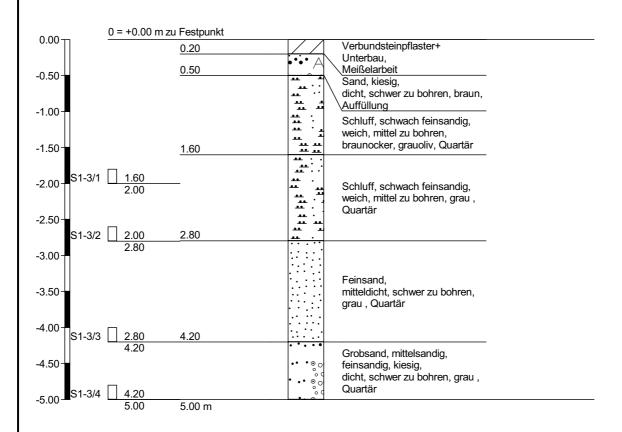
RKS S1-1



Höhenmaßstab 1:50

			Scriichtei		Bericht	:					
		für B	ohrungen ohne durchgeher	nde Gewinnur	ng von geke	rnten Proben	Az.:				
Bauvorl	haben: Ha	allen Mönchenglad	bach								
Bohru	ung N	Ir RKS S1-1 /	Blatt 1				Datum: 16.02	: 2.2011			
1			2			3	4	5	6		
		ennung der Boder Beimengungen	nart			Bemerkungen	Entnommene Proben				
Bis		änzende Bemerku	ngen ¹)			Sonderprobe Wasserführung			Tiefe		
m unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit e) Farbe nach Bohrvorgang			Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)		
punkt	f) Übli Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				Karite,		
		on+ Unterbau, Selarbeit									
0.20	b)										
	c)		d) Meißelarbeit	e)							
	f)		g)	h)	i)						
		schutt, Schlacke, it, schwer zu bohr	ren, grau, dunkelgrau, Auffi								
	b)										
0.40	c) dich	ıt	d) schwer zu bohren	e) grau, o	dunkelgrau	erdfeucht					
	f)		g) Auffüllung	h)	i)						
		luff, schwach fein ch, mittel zu bohre	sandig, en, braunocker, Quartär								
	b)										
2.40	c) weid	ch	d) mittel zu bohren	e) braund	ocker	- feucht					
	f)		g) Quartär	h)	i)						
	a) Feir mitt	nsand, schluffig, eldicht, schwer zu	ı bohren, grau, Quartär				С	S1- 1/1	4.40		
4.00	b)					nass					
4.60	c) mitte	eldicht	d) schwer zu bohren	e) grau		lagenweise CKW-Geruch					
	f)		g) Quartär	h)	i)						
	a) Gro dich	bsand, mittelsand t, schwer zu bohr	ig, kiesig, en, grau , Quartär	•							
	b)					nass					
5.00	c) dich	ıt				CKW-Geruch					
	f)		g) Quartär	h)	i)						
1) Eir	ntragung r	immt der wissens	chaftliche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 16.02.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-2	Bearb.: von der Bruck			

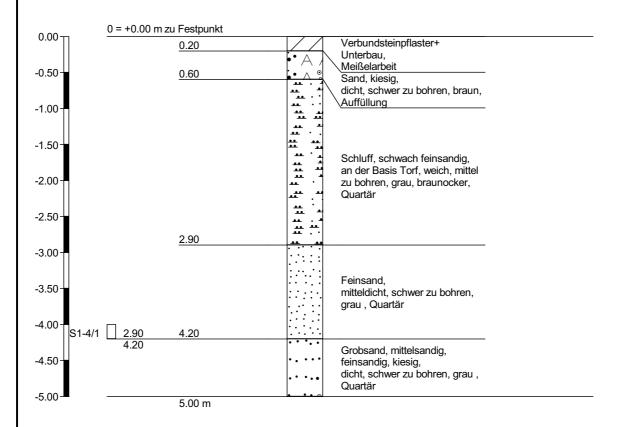

RKS S1-2

Höhenmaßstab 1:50

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben										Bericht:			
			tür Bo	ohru	ngen ohne durchgehend	de G	ewinnun	ig von gekei	rnten Proben	Az.	:			
Bauvorh	nabe	n: Hall	len Mönchengladb	ach										
Bohru	ıng	Nı	r RKS S1-2 /E	Blatt	1						tum: 16.02	2.2011		
1					2				3		4	5	6	
	a)	Bene	ennung der Boden: Beimengungen	art					Pomorkungon		Er	ntnomi Probe		
Bis	b)		nzende Bemerkun	gen	1)				Bemerkungen Sonderprobe			FIODE	3 11	
m									Wasserführung Bohrwerkzeuge				Tiefe in m	
unter Ansatz-	(c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Kernverlust		Art	Nr.	(Unter-	
punkt	f)	Üblic		g)	Geologische ¹) Benennung	h)	1) Gruppe	i) Kalk- gehalt	Sonstiges				kante)	
	a)	Beton+ Unterbau, Meißelarbeit												
	b)							-						
0.20	c)			d)	Meißelarbeit	e)								
	f)			g)		h)		i)	_					
	a)		uff, schwach feins n, mittel zu bohrei											
2.50	b)		·	<u> </u>										
	c)	weich	า	d)	mittel zu bohren	e)	braunc	ocker	- feucht					
	f)			g)	Quartär	h)		i)						
	′	a) Feinsand, lagenweise mittelsandig, einzelne Kiese, dicht, schwer zu bohren, grau								C	5	S1- 2/1	4.40	
5.00	b)	b) Augenweise mittelsandig, einzelne Kiese							nass					
5.00	c)	dicht		d)	d) schwer zu bohren e) grau			CKW-Geruch						
	f)			g)	Quartär	h)		i)						
	a)													
	b)													
	c)			d)		e)								
	f)			g)		h)		i)						
	a)													
	b)							-						
	c)	c) d) e)												
	f)	g) h) i)												
1\ Ein	tragi	ına ni	mmt der wissensc	hoft	ioho Doorhoitor var									

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 17.02.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-3	Bearb.: von der Bruck			

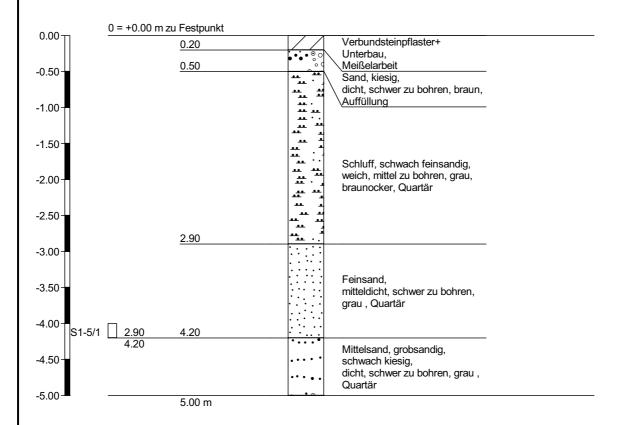
Höhenmaßstab 1:50


			Ochloriter		Bericht:				
		für B	ohrungen ohne durchgehen	de Gewinnur	ng von gekei	nten Proben	Az.:		
Bauvorl	haben: Ha	llen Mönchenglad	bach						
Bohru	ung N	r RKS S1-3 /I	Blatt 1				Datum: 17.02	2.2011	
1			2			3	4	5	6
	a) Bendund	ennung der Boden Beimengungen	art			Bemerkungen	E	ntnom Probe	
Bis	b) Ergä	inzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)
punkt	f) Üblid Bend	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				,
		oundsteinpflaster+ Selarbeit	· Unterbau,						
0.00	b)	SCIAI DOIL		Direct-Push-Grund wasserprobe	t				
0.20	c)		d) Meißelarbeit	e)		entnommen (2xHS 1x Glas)	5,		
	f)		g)	h)	i)				
		d, kiesig, t, schwer zu bohr	en, braun, Auffüllung						
0.50	b)								
0.50	c) dich	t	d) schwer zu bohren	e) braun		erdfeucht			
	f)		g) Auffüllung	h)	i)				
	a) Schl weid	uff, schwach fein: h, mittel zu bohre	sandig, n, braunocker, grauoliv, Qu						
1.00	b)			farralis					
1.60	c) weic	h	d) mittel zu bohren	e) braund grauol		feucht			
	f)		g) Quartär	h)	i)				
	a) Schl weid	uff, schwach fein: h, mittel zu bohre	sandig, n, grau , Quartär				С	S1- 3/1 S1-	2.00
2.80	b)					feucht		3/2	2.00
2.00	c) weic	h	d) mittel zu bohren	e) grau		Ölgeruch			
	f)		g) Quartär	h)	i)				
	a) Fein mitte		bohren, grau , Quartär				С	S1- 3/3	4.20
	b)					nass			
4.20	c) mitte	eldicht	d) schwer zu bohren	e) grau		Ölgeruch			
	f)		g) Quartär	h)	i)				
¹) Eir	ntragung n	immt der wissenso	chaftliche Bearbeiter vor.						

Anlage Bericht:

			Bericht:						
		für Bo	ohrungen ohne durchgeher	nde Gewinnui	ng von geker	nten Proben	Az.:		
Bauvorh	haben: Hal	len Mönchengladl	oach						
Bohru	ung N	r RKS S1-3 /E	Blatt 2				Datum: 17.02	2.2011	
1			2			3	4	5	6
	a) Bene und	ennung der Boden Beimengungen	art			Bemerkungen	E	ntnomr Probe	
Bis		nzende Bemerkur	ngen ¹)			Sonderprobe			T' . C .
m unter	c) Beso	chaffenheit	d) Beschaffenheit e) Farbe			Wasserführung Bohrwerkzeuge	Art	Nr.	Tiefe in m
Ansatz- punkt		Bohrgut	nach Bohrvorgang	· ·	:) /- -	Kernverlust Sonstiges			(Unter- kante)
		ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				
	a) Grob	sand, mittelsandi	g, feinsandig, kiesig, en, grau , Quartär				С	S1- 3/4	5.00
	b)	., John Zu Dorn	ori, grad , waartar						
5.00						nass			
	c) dicht	İ	d) schwer zu bohren	e) grau					
	f)		g) Quartär	h)	i)				
	a)		<u> </u>						
	b)								
	c) d) e								
	f)		g)	h)	i)				
	a)			1	•				
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)		•	1	1				
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
¹) Ein	ntragung ni	immt der wissensc	haftliche Bearbeiter vor.		1	1			

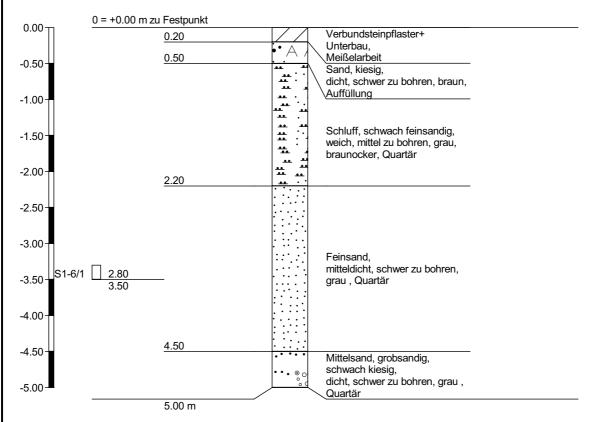
Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 17.02.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-4	Bearb.: von der Bruck		


RKS S1-4

Höhenmaßstab 1:50

	Schichtenverzeichni								Bericht:					
			für Bo	hru	ngen ohne durchgehen	de Gewi	nnun	g von geker	nten Proben	Α	.z.:			
Bauvorh	naber	n: Hall	en Mönchengladb	ach										
Bohru	ıng	Nr	RKS S1-4 /E	Blatt	1					D	atum: 17.02	2.2011		
1					2				3		4	5	6	
			nnung der Boden	art					D I		Eı	ntnom		
Bis			Beimengungen nzende Bemerkun	gen	1)				Bemerkungen Sonderprobe			Probe	en	
m				_		T			Wasserführung Bohrwerkzeuge				Tiefe in m	
unter Ansatz-			haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e) Farbe			Kernverlust Sonstiges		Art	Nr.	(Unter- kante)	
punkt		Üblich	he nnung	g)	Geologische ¹) Benennung	h) 1)) ippe	i) Kalk- gehalt	Jonstiges				Karite)	
			undsteinpflaster+	Unt		_ Oid	ррс	geriait						
			elarbeit											
	b)								Direct-Push-Grun	d				
0.20	c)	c)			Meißelarbeit	e)			wasserprobe entnommen (2xHs	S)				
	f)			~\ -		b)		:\						
	1)			g)		h)		i)						
			, kiesig,		verus Auffüllung									
	b)	uicrit,	schwer zu bohre	#11, L	rauri, Auriuliurig									
0.60									erdfeucht					
	c)	dicht		d)	schwer zu bohren	e) br	aun							
	f)			g)	Auffüllung	h)		i)						
		a) Schluff, schwach feinsandig, an der Basis Torf, weich, mittel zu bohren, grau, braunocker, Quartär												
	b)	-							feucht					
2.90	c)	weich	1	d)	mittel zu bohren	e) gr	au, b	raunocker	lagenweise Klopfnässe					
	f)			g)	Quartär	h)		i)						
	a)	Feins mittel	and, dicht, schwer zu	boh	ren, grau , Quartär						С	S1- 4/1	4.20	
	b)								nass					
4.20	c)			d)		e) ar			leichter fauliger Geruch					
		mittel	dicht		schwer zu bohren	9'	au		Gerucii					
	f)			g)	Quartär	h)		i)						
	a)	Grobs dicht,	sand, mittelsandi schwer zu bohre	g, fe	insandig, kiesig, ırau , Quartär									
5.00	b)							·	2000					
3.00	c)	dicht		d)	schwer zu bohren	e) gr	au		nass					
	f)			g)	Quartär	h)		i)						
1\ Ein	tragu	na nir	mmt dor wicconco	haftl	iche Bearbeiter vor.									

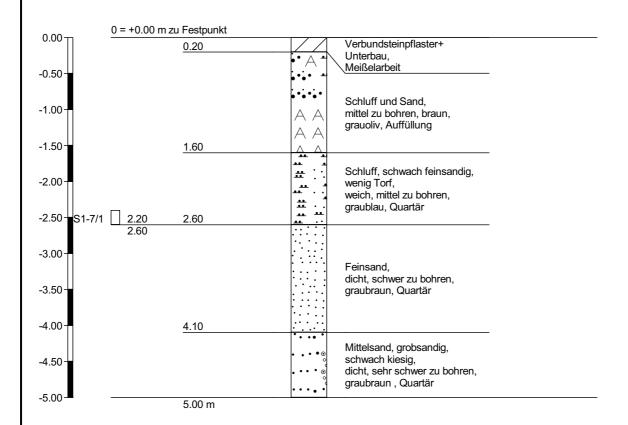
Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 17.02.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-5	Bearb.: von der Bruck		


Höhenmaßstab 1:50

Anlage Bericht

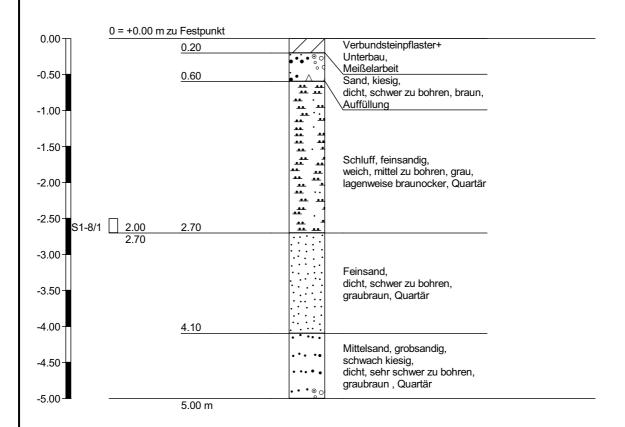
			Bericht:								
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geker	nten Proben	Az.:				
Bauvort	naben: Ha	allen Mönchengladl	bach								
Bohru	ıng N	Nr RKS S1-5 /E	Blatt 1				Datum: 17.02	2.2011			
1			2			3	4	5	6		
		nennung der Boden I Beimengungen	art			Bemerkungen	Entnommene Proben				
Bis		änzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe		
m unter		schaffenheit	d) Beschaffenheit e) Farbe			Bohrwerkzeuge Kernverlust		Nr.	in m (Unter-		
Ansatz- punkt		h Bohrgut iche	nach Bohrvorgang g) Geologische ¹)	h) ¹)	i) Kalk-	Sonstiges			kante)		
	Ber	nennung	Benennung	Gruppe	gehalt						
	a) Ver Mei	bundsteinpflaster+ ßelarbeit	Unterbau,								
	b)										
0.20	c)		d) Maigrature it	e)							
			d) Meißelarbeit	5,							
	f)		g)	h)	i)						
		nd, kiesig, nt, schwer zu bohre	en, braun, Auffüllung								
	b)										
0.50	c) dict	nt	d) schwer zu bohren	e) braun		erdfeucht					
	f)		g) Auffüllung	h)	i)						
		nluff, schwach feins ch, mittel zu bohre	⊥ sandig, n, grau, braunocker, Quart								
2.00	b)			feucht							
2.90	c) wei	ch	d) mittel zu bohren	e) grau, t	oraunocker	lagenweise Klopfnässe					
	f)		g) Quartär	h)	i)						
	a) Feii mitt		bohren, grau , Quartär				С	S1- 5/1	4.20		
4.20	b)					nass					
4.20	c) mitt	eldicht	d) schwer zu bohren	e) grau		lidos					
	f)		g) Quartär	h)	i)						
	a) Mitt	elsand, grobsandiç nt, schwer zu bohr	g, schwach kiesig, en, grau , Quartär								
	b)										
5.00	c) dicl	nt	d) schwer zu bohren	e) grau		- nass					
	f)		g) Quartär	h)	i)						
¹) Ein	ntragung i	nimmt der wissensc	chaftliche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 17.02.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-6	Bearb.: von der Bruck			


RKS S1-6

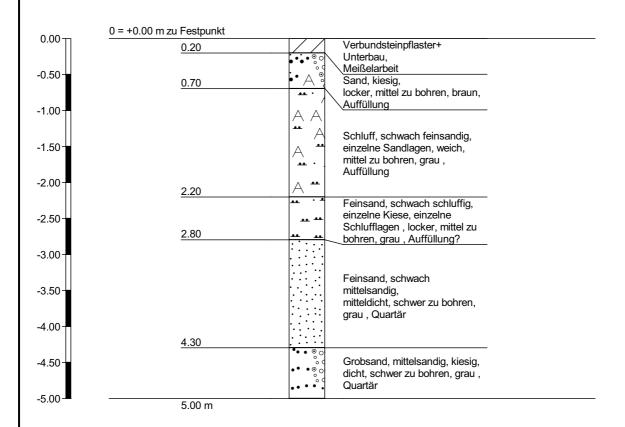
Höhenmaßstab 1:50

SCNICNTENVERZEICNNIS für Bohrungen ohne durchgehende Gewinnung von gekernten Proben										Bericht:			
					origorioriac	Commu	ng von gekei	TILCHT TODON	Az.:				
Bauvort	nabe	n: Hal	len Mönchengladb	ach					Datum:				
Bohru	ıng	N	r RKS S1-6 /E	Blatt 1						2.2011			
1				2				3	4	5	6		
	a)	Bene und E	ennung der Boden: Beimengungen	art				Bemerkungen	E	ntnomi Probe			
Bis	b)	Ergä	nzende Bemerkun	gen ¹)				Sonderprobe Wasserführung			Tiefe		
unter Ansatz-	c)		haffenheit Bohrgut	d) Beschaffenho nach Bohrvoi		e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter-		
punkt	f)	Üblic Bene	he ennung	g) Geologische Benennung	1)	h) ¹) Gruppe	i) Kalk- gehalt	Solistiges			kante)		
0.20	a)		undsteinpflaster+ elarbeit	Unterbau,									
	b)	p)											
	c)			d) Meißelarbeit		e)							
	f)			g)		h)	i)						
	a)		I, kiesig, , schwer zu bohre	en, braun, Auffüllu									
0.50	b)												
0.50	c)	dicht		d) schwer zu bo	ohren	e) braun		erdfeucht					
	f)			g) Auffüllung		h)	i)						
	a)		uff, schwach feins h, mittel zu bohrei										
0.00	b)	-											
2.20	c)	weicl	h	d) mittel zu boh	ren	e) grau, braunocker		feucht					
	f)			g) Quartär		h)	i)						
	a)	Feins mitte		bohren, grau , Qu	ıartär				С	S1- 6/1	3.50		
	b)												
4.50	c)	mitte	ldicht	d) schwer zu bo	ohren	e) grau		nass					
	f)			g) Quartär		h)	i)						
	a)	Mitte dicht	lsand, grobsandiç , schwer zu bohre	ı, schwach kiesig, en, grau , Quartär			•						
F 00	b)												
5.00	c)	dicht	:	d) schwer zu bo	ohren	e) grau		nass					
	f)			g) _{Quartär}		h)	i)						
1) =:			mmt der wiesensc	601 1 1 11						-			


Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 17.02.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-7	Bearb.: von der Bruck			

Höhenmaßstab 1:50

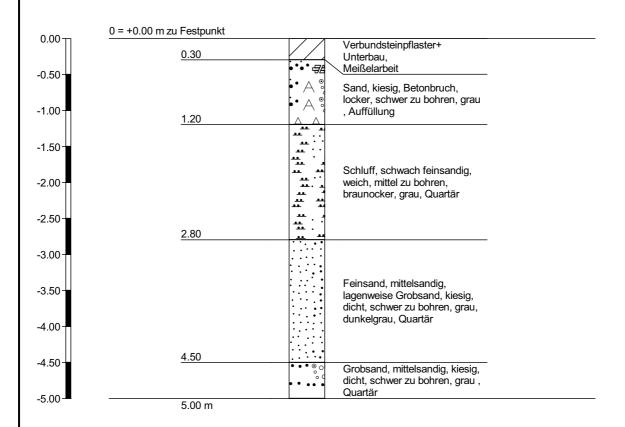
					Ochloriter	IVC	12010	111113		В	ericht:		
			für Bo	hru	ngen ohne durchgehen	de G	ewinnun	ig von geker	nten Proben	Α	z.:		
Bauvorh	nabe	n: Hal	len Mönchengladb	ach									
Bohrung Nr RKS S1-7 /Blatt 1									Datum: 17.02.2011				
1					2				3		4	5	6
	a)		ennung der Boden: Beimengungen	art					Bemerkungen		Entnommene Proben		
Bis	b)	o) Ergänzende Bemerkungen ¹)							Sonderprobe				T: 6
m unter	c)	Besc	haffenheit	d)	d) Beschaffenheit e) Farbe			Wasserführung Bohrwerkzeuge		Art	Nr.	Tiefe in m	
Ansatz- punkt			Bohrgut		nach Bohrvorgang	<u> </u>		"> 14 "	Kernverlust Sonstiges				(Unter- kante)
pu	t)	Üblic Bene	he ennung	g)	Geologische ¹) Benennung		1) Gruppe	i) Kalk- gehalt					
	a)		undsteinpflaster+ elarbeit	Unt	erbau,								
	b)								BP 1x versetzt				
0.20	Ļ					Ι,			(+0,5 m) Direct-Push-Wass				
	c)			d)	Meißelarbeit	e)			rprobe entnommer (2HS)	n			
	f)			g)		h)		i)					
	a)		uff und Sand,										
	b)	mitte	l zu bohren, braui	n, gr	auoliv, Auffüllung								
1.60	D)								feucht				
1.00	c)			d)	mittel zu bohren	e)	braun,	grauoliv	ledent				
	f)			g)	Auffüllung	h)		i)					
	a)	Schlu			С	S1- 7/1	2.60						
	b)		feucht an der Basis										
2.60	c)	weicl	า	d)	mittel zu bohren	e)	graubla	au	leichter chemische Geruch	er			
	f)			g)	Quartär	h)		i)					
	a)	Feins dicht		en, g	graubraun, Quartär								
	b)												
4.10	c)	dicht		d)	schwer zu bohren	e)	graubr	aun	nass				
	f)			g)	Quartär	h)		i)					
	a)		lsand, grobsandiç , sehr schwer zu		hwach kiesig, ren, graubraun , Quarta	är							
	b)												
5.00	c)	dicht		d)	sehr schwer zu bohren	e)	graubr	aun	nass				
	f)			g)	Quartär	h)		i)					
1) Ein	ntraqı	una ni	mmt der wissensc	haftl	iche Bearbeiter vor.								


Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 17.02.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-8	Bearb.: von der Bruck			

Höhenmaßstab 1:50

			Ochloriter	IVGIZGIC	111113		Bericht	:	
		für B	ohrungen ohne durchgehen	de Gewinnur	ng von geke	nten Proben	Az.:		
Bauvorl	naben: F	Hallen Mönchenglad	bach						
Bohru	ıng	Nr RKS S1-8 /	Blatt 1				Datum: 17.02	2.2011	
1			2			3	4	5	6
	a) Be un	enennung der Boder id Beimengungen	art			Bemerkungen	E	ntnom Probe	
Bis	b) Er	gänzende Bemerkui	Sonderprobe Wasserführung			Tiofo			
unter Ansatz-		eschaffenheit och Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	Tiefe in m (Unter- kante)
punkt		oliche enennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Conougue			1.007
		erbundsteinpflaster+ eißelarbeit	· Unterbau,	'					
	b)	eliseiai beit							
0.20	>		-1/	T ->		Direct-Push-Wass rprobe entnommer	-		
	c)		d) Meißelarbeit	e)		(2HS)			
	f)		g)	h)	i)				
		and, kiesig, cht, schwer zu bohr	en, braun, Auffüllung						
	b)								
0.60	c) die	cht	d) schwer zu bohren e) braun			feucht			
	f)		g) Auffüllung	h)	i)				
		chluff, feinsandig, eich, mittel zu bohre	n, grau, lagenweise braund		С	S1- 8/1	2.70		
	b)			feucht, lagenweise Klopfnässe	•				
2.70	c) we	eich	d) mittel zu bohren	e) grau, l braund	agenweise ocker	an der Basis Ölgeruch			
	f)		g) Quartär	h)	i)				
		einsand, cht, schwer zu bohr	en, graubraun, Quartär						
4.10	b)								
4.10	c) die	cht	d) schwer zu bohren	e) graubr	aun	nass			
	f)		g) Quartär	h)	i)				
	a) Mi	ttelsand, grobsandi cht, sehr schwer zu	g, schwach kiesig, bohren, graubraun , Quarta	är					
F 00	b)								
5.00	c) die	cht	d) sehr schwer zu bohren	e) graubr	aun	nass			
	f)		g) Quartär	h)	i)				
¹) Eir	ntragung	nimmt der wissenso	chaftliche Bearbeiter vor.						

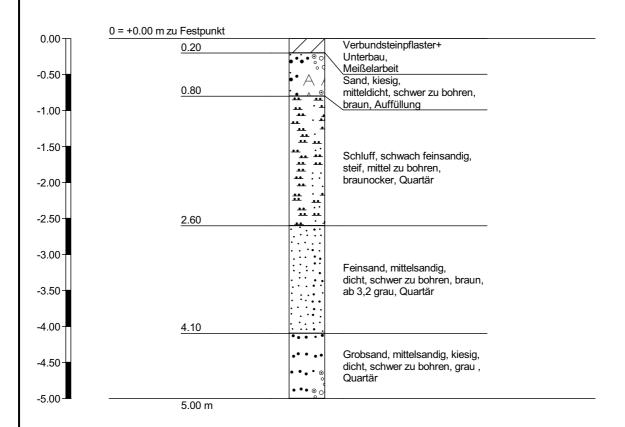
Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-9	Bearb.: von der Bruck				



Höhenmaßstab 1:50

					Schichten					Bericht:			
			für Bo	ohrun	gen ohne durchgehend	de Gewir	nnung	von geker	nten Proben	Az	z.:		
Bauvorh	nabe	n: Hal	len Mönchengladb	oach									
Bohrung Nr RKS S1-9 /Blatt 1 Datum: 15.06.2011													
1					2				3		4	5	6
	a)	Bene und I	ennung der Bodena Beimengungen		Bemerkungen		Er	ntnomr Probe					
Bis	b)	Ergä	nzende Bemerkun	ngen 1	1)				Sonderprobe Wasserführung				Tiefe
unter Ansatz-	c)		haffenheit Bohrgut		Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter- kante)	
punkt	f)	Üblic Bene	he ennung		Geologische ¹) Benennung	h) ¹) Gru		i) Kalk- gehalt	Conduged				Karto)
	a)	Verb	undsteinpflaster+ elarbeit										
	b)	IVICIIS	Ciai Deit										
0.20	c)	c)			Meißelarbeit	e)							
	f)			g)		h)		i)					
	a)		I, kiesig, er, mittel zu bohre										
	b)	IOCK	or, militar za bom a	11, 1016	aun, Aunullung								
0.70	c)			d)		e) b			trocken-erdfeucht				
		locke	er	u)	mittel zu bonren praun								
	f)			g)	Auffüllung	h)		i)					
	a)		uff, schwach feins elne Sandlagen, w										
2.20	b)	b) einzelne Sandlagen							feucht				
2.20	c)	weicl	h	d)	mittel zu bohren	e) grau			Teucht				
	f)			g)	Auffüllung	h)		i)					
	a)	einze	sand, schwach sc elne Kiese, einzeln illung?	hluffi ne Sc	g, hlufflagen , locker, mit	tel zu bo	ohren,	grau ,					
2.80	b)		elne Kiese, einzeln	ne Sc	hlufflagen				feucht leichter				
2.00	c)	locke	er	d)	mittel zu bohren	e) gra	au		Benzingeruch				
	f)			g)	Auffüllung?	h)		i)					
	a)		sand, schwach mi ldicht, schwer zu		andig, en, grau , Quartär								
	b)								feucht, ab 3,4 m				
4.30	c)	mitte	ldicht	d)	schwer zu bohren	e) gra	au		leichter Benzingeruch				
	f)			g)	Quartär	h)		i)					
1) [mmt der wiesensc	£41: -	the December 2000								

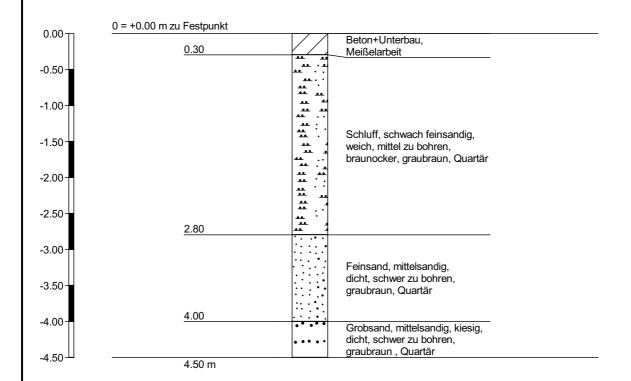
	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben										Az.:			
Bauvorhaben: Hallen Mönchengladbach														
Bohrung Nr RKS S1-9 /Blatt 2									Datum: 15.06.2011					
1					2			3	4		5	6		
	a) Benennung der Bodenart und Beimengungen								Entnomn Probe					
Bis	b)		nzende Bemerkur		Bemerkungen Sonderprobe Wasserführung				Tiefe					
unter Ansatz-	Ĺ	Beschaffenheit nach Bohrgut			Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	t	Nr.	in m (Unter- kante)		
punkt	f)	Üblic Bene	he ennung	g)	Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	3.7.0				,		
	a)		sand, mittelsandi , schwer zu bohre											
	b)							nass						
5.00	c)	dicht		d)	schwer zu bohren	e) grau		leichter Benzingeruch						
	f)			g)	Quartär	h)	i)							
	a)													
	b)													
	c)	c) d) e)												
	f)			g)		h)	i)							
	a)					-								
	b)													
	c)			d)		e)								
	f)			g)		h)	i)							
	a)					ı	ı							
	b)													
	c)			d)		e)								
	f)			g)		h)	i)							
	a)					1	1							
	b)													
	c)			d)		e)								
	f)			g)		h)	i)							
1) Ein	ntrag	ung ni	mmt der wissensc	haft	liche Bearbeiter vor.	1	1	1						


Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 15.06.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-10	Bearb.: von der Bruck			

Höhenmaßstab 1:50

			Schichter				Bericht:			
	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.:									
Bauvort	naben: H	allen Mönchengladl	bach							
Bohru	ıng l	Nr RKS S1-10	/Blatt 1				Datum: 15.06	6.2011		
1			2			3	4	5	6	
		nennung der Boden d Beimengungen	art	Bemerkungen	E	ntnomr Probe				
Bis		jänzende Bemerkur	Sonderprobe Wasserführung			Tiefe				
unter Ansatz-		schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)	
punkt		liche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Jonstiges			Karite)	
	a) Vei	bundsteinpflaster+ ißelarbeit								
	b)	iiseiai beit								
0.30	c) d) Meißelarbeit e)									
	f)		g)	h)	i)					
		nd, kiesig, Betonbro ker, schwer zu boh	uch, ıren, grau , Auffüllung							
	b)									
1.20	c) loc	ker	d) schwer zu bohren e) grau			- feucht				
	f)		g) Auffüllung	h)	i)					
		nluff, schwach fein ich, mittel zu bohre	sandig, n, braunocker, grau, Quarta							
0.00	b)									
2.80	c) we	ch	d) mittel zu bohren	e) braund	ocker, grau	feucht				
	f)		g) Quartär	h)	i)					
	lag	nsand, mittelsandiç enweise Grobsand nkelgrau, Quartär	g, , kiesig, dicht, schwer zu bo	ohren, grau,	•	-				
4.50	b) lag	enweise Grobsand	, kiesig			feucht, ab 3,4 m				
7.50	c) dic	ht	d) schwer zu bohren		dunkelgrau	Benzingeruch				
	f)		g) Quartär	h)	i)					
	a) Gro	obsand, mittelsandi ht, schwer zu bohr	g, kiesig, en, grau , Quartär							
	b)									
5.00	c) dic	ht	d) schwer zu bohren	e) grau		nass				
	f)		g) Quartär	h)	i)					
¹) Ein										

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 15.06.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-11	Bearb.: von der Bruck			

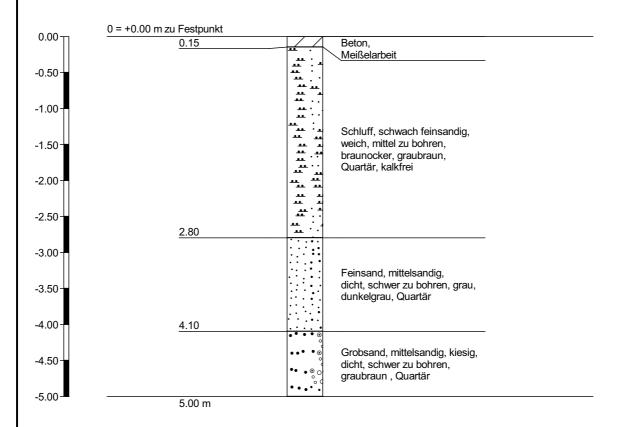


Höhenmaßstab 1:50

			für Po	SCNICNTE ohrungen ohne durchgehe			rnton Probon	Bericht:			
			lui Bo	omangen ome darengene	ilde Gewiilii	ung von gekei	menrioben	Az.:			
Bauvorh	nabe	n: Hal	len Mönchengladb	pach				Datum:			
Bohrung Nr RKS S1-11 /Blatt 1 15.06.2011											
1				2			3	4	5	6	
	a)	Bene und E	ennung der Boden: Beimengungen	art	Bemerkungen	E	ntnomr Probe				
Bis	b)		nzende Bemerkun	gen ¹)			Sonderprobe Wasserführung			Tiefe	
unter Ansatz-	Ĺ	nach	haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
punkt	f)	Üblic Bene	he ennung	g) Geologische ¹) Benennung	h) ¹) Grupp	i) Kalk- e gehalt				,	
	a)		undsteinpflaster+ elarbeit	Unterbau,							
	b)										
0.20	c)			d) Meißelarbeit	e)						
	f)			g)	h)	i)					
	a)		I, kiesig, Idicht, schwer zu	bohren, braun, Auffüllung							
0.80	b)		·								
	c)	mitte	ldicht	d) schwer zu bohren e) braun			erdfeucht				
	f)			g) Auffüllung	h)	i)					
	a)		uff, schwach feins mittel zu bohren,	andig, braunocker, Quartär							
0.00	b)				Ī						
2.60	c)	steif		d) mittel zu bohren	e) brau	nocker	erdfeucht				
	f)			g) Quartär	h)	i)					
	a)		sand, mittelsandig , schwer zu bohre	, en, braun, ab 3,2 grau, Q	uartär						
	b)						feucht, ab 3,4 m				
4.10	c)	dicht	:	d) schwer zu bohren	e) brau grau	n, ab 3,2	- ab 3,2 m deutliche chemischer Geruch	er			
	f)			g) Quartär	h)	i)					
	a)	Grob dicht	sand, mittelsandi , schwer zu bohre	g, kiesig, en, grau , Quartär	•	•					
E 00	b)						nass				
5.00	c)	dicht	:	d) schwer zu bohren	e) grau	l	leichter chemische Geruch	# [*]			
	f)			g) Quartär	h)	i)					
1)				haftliche Bearbeiter vor		•					

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 15.06.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-12	Bearb.: von der Bruck			

RKS S1-12

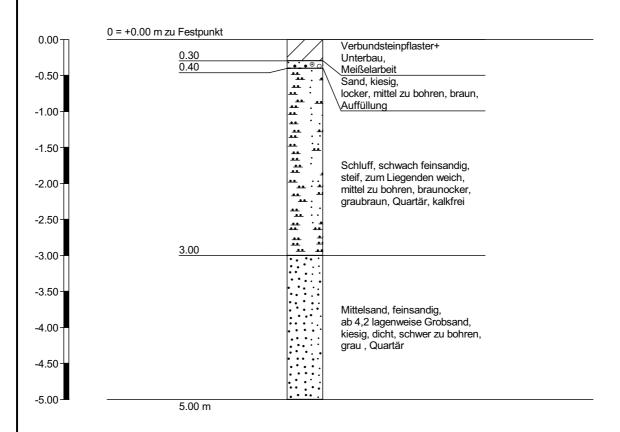


Höhenmaßstab 1:50

			Ochlichter		Bericht:				
		für Bo	ohrungen ohne durchgeher	nde Gewinnur	ng von gekei	nten Proben	Az.:		
Bauvorh	naben: Ha	llen Mönchengladl	bach						
Bohru	ıng N	r RKS S1-12	/Blatt 1				Datum: 15.06	6.2011	
1			2			3	4	5	6
		ennung der Boden Beimengungen	art			Bemerkungen	E	mene en	
Bis		inzende Bemerkur	ngen 1)			Sonderprobe			T:-f-
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust Sonstiges		Nr.	Tiefe in m (Unter- kante)
punkt	f) Üblic Bene	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Consuges			Karto)
		n+Unterbau, Selarbeit							
	b)								
0.30	c)		d) Meißelarbeit	e)					
	f)		g)	h)	i)				
		uff, schwach feins h, mittel zu bohre	⊥ sandig, n, braunocker, graubraun,						
	b)								
2.80	c) weic	h	d) mittel zu bohren	e) braund graubr		feucht			
	f)		g) Quartär	h)	i)				
	a) Fein dicht	sand, mittelsandiç t, schwer zu bohr	g, en, graubraun, Quartär						
4.00	b)			feucht, ab 3,4 m					
4.00	c) dicht	t	d) schwer zu bohren	e) graubr	aun	nass			
	f)		g) Quartär	h)	i)				
	a) Grob dicht	osand, mittelsandi t, schwer zu bohr	g, kiesig, en, graubraun , Quartär						
4.50	b)					nace			
4.50	c) dich	t	d) schwer zu bohren	e) graubr	aun	- nass			
	f)		g) Quartär	h)	i)				
	a)								
	b)								
	c)								
	f)		g)	h)	i)				
1) Ein	tragung n	immt der wissensc	chaftliche Bearbeiter vor.		1	•	<u> </u>		

Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-13	Bearb.: von der Bruck				

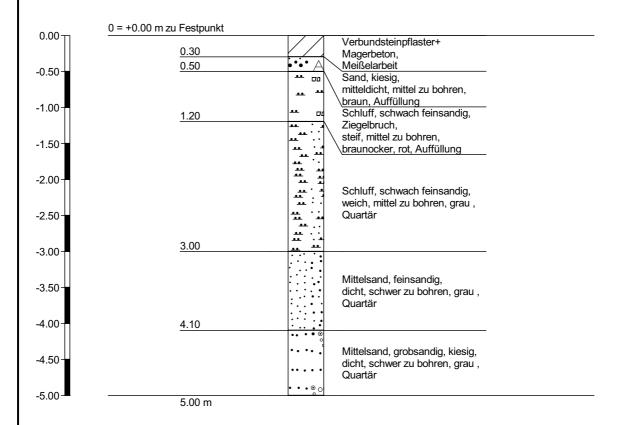
RKS S1-13



Höhenmaßstab 1:50

			Bericht:						
		für B	ohrungen ohne durchgehen	nde Gewinnur	ng von geke	nten Proben	Az.:		
Bauvorh	naben: Ha	llen Mönchenglad	bach						
Bohru	ıng N	r RKS S1-13	/Blatt 1				Datum: 15.06	6.2011	
1			2			3	4	5	6
	a) Bendund	ennung der Boden Beimengungen	art	Bemerkungen	Entnommene Proben				
Bis		inzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-	nach	chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)		
punkt	f) Üblid Bend	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				,
	a) Beto Meiß	on, Selarbeit							
	b)								
0.15	c)		d) Meißelarbeit	e)		-			
	f)		g)	h)	i)				
		luff, schwach fein: th, mittel zu bohre	sandig, n, braunocker, graubraun,						
	b)		<u> </u>						
2.80	c) weic	:h	d) mittel zu bohren	e) braund		feucht			
	f)		g) Quartär	h)	i) 0				
	a) Fein dich	sand, mittelsandiç t, schwer zu bohr	g, en, grau, dunkelgrau, Quai						
4.10	b)			feucht, ab 3,4 m					
4.10	c) dich	t	d) schwer zu bohren	r zu bohren e) grau, dunkelgrau			er		
	f)		g) Quartär	h)	i)				
	a) Grob dich	osand, mittelsand t, schwer zu bohr	ig, kiesig, en, graubraun , Quartär						
5.00	b)					nass			
3.00	c) dich	t	d) schwer zu bohren	e) graubr	aun	chemischer Gerud	ch		
	f)		g) Quartär	h)	i)				
	a)								
	b)								
	c)								
	f)		g)	h)	i)				
¹) Ein	tragung n	immt der wissenso	chaftliche Bearbeiter vor.	1	1	1			

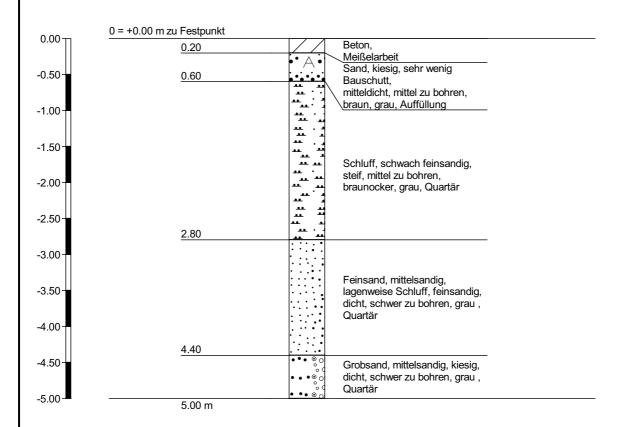
Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-14	Bearb.: von der Bruck				


RKS S1-14

Höhenmaßstab 1:50

Bauvorh	naben: Halle	en Mönchengladt	oacn			I	Datum:		
Bohru	ıng Nr	RKS S1-14	/Blatt 1					5.2011	
1			2			3	4	5	6
	a) Bener und B	nnung der Boden eimengungen	art			Bemerkungen	E	mene en	
Bis	b) Ergän	zende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-	c) Besch nach l	affenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unte
punkt	f) Üblich Bener		g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				Ranto
		ndsteinpflaster+ elarbeit	Unterbau,						
	b)								
0.30	c)		d) Meißelarbeit	e)					
	f)		g)	h)	i)				
	a) Sand, locker		n, braun, Auffüllung	1	1				
0.40	b)								
	c) locker		d) mittel zu bohren	e) braun		erdfeucht			
	f)		g) Auffüllung	h)	i)				
	a) Schlu steif, :	ff, schwach feins zum Liegenden v	sandig, veich, mittel zu bohren, br	aunocker, gr	aubraun,				
	b) Quart	är, kalkfrei		erdfeucht, zum Liegenden lagenweise					
3.00	c) steif, a	zum Liegenden	d) mittel zu bohren	e) braun graub		Klopfnässe zum Liegenden schwach kalkhaltig	,		
	f)		g) Quartär	h)	i) 0	- Scriwacii Kaikiiailig	,		
	a) Mittels ab 4,2		, bbsand, kiesig, dicht, schw	ver zu bohrer	n, grau ,				
5.00	I h)	ar 2 lagenweise Gro	obsand, kiesig			nass			
5.00	c) dicht		d) schwer zu bohren	e) grau		leichter chemische Geruch	er		
	f)		g) Quartär	h)	i)				
	a)		ı						
	b)								
	c)		d)	e)					
	f)		g)	1	i)	4			

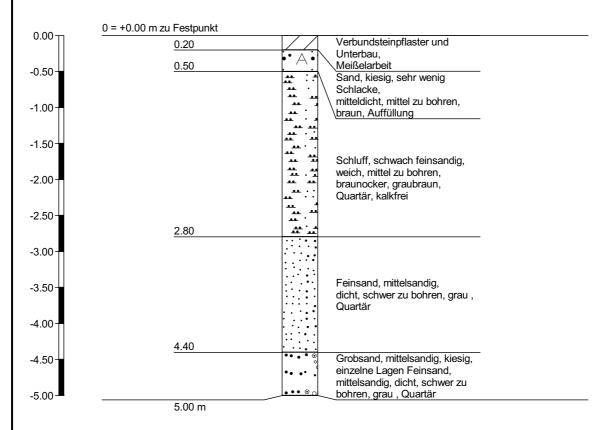
Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-15	Bearb.: von der Bruck				



Höhenmaßstab 1:50

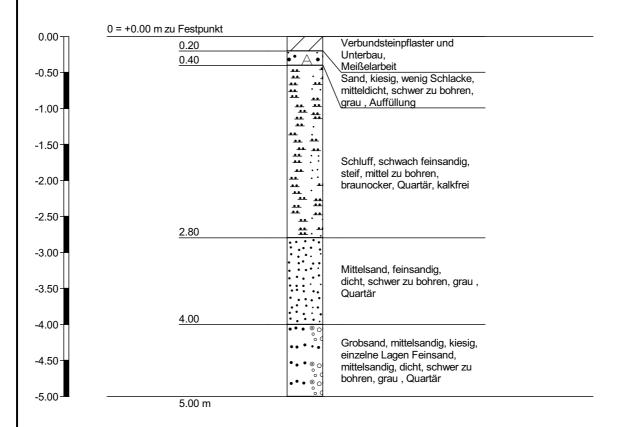
		£:: F	Schichtei	onton Doob on	Bericht:				
		Tur E	Bohrungen ohne durchgeher	nde Gewinnu	ng von geke	rnten Proben	Az.:		
Bauvorl	haben: Ha	allen Mönchenglad	lbach				Datum:		
Bohru	ung N	Ir RKS S1-15	/Blatt 1					6.2011	
1			2			3	4	5	6
		ennung der Bode Beimengungen	nart	Bemerkungen	Entnommene Proben				
Bis		änzende Bemerku	ingen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)
punkt	f) Übli Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				
		oundsteinpflaster [.] Selarbeit	+ Magerbeton,						
	b)								
0.30	c)		d) Meißelarbeit	e)		-			
	f)		g)	h)	i)				
	a) San	d, kiesig, eldicht, mittel zu l	bohren, braun, Auffüllung						
	b)	,	, , ,			-			
0.50	c) mitte	eldicht	d) mittel zu bohren	e) braun		feucht			
	f)		g) Auffüllung	h)	i)	-			
			nsandig, Ziegelbruch, n, braunocker, rot, Auffüllun						
4.00	b)]					
1.20	c) steit	F	d) mittel zu bohren	e) braun	ocker, rot	erdfeucht			
	f)		g) Auffüllung	h)	i)				
	a) Sch weid	luff, schwach feir ch, mittel zu bohre	nsandig, en, grau , Quartär	•					
	b)					feucht, lagenweise	9		
3.00	c) weid	ch	d) mittel zu bohren	e) grau		Klopfnässe			
	f)		g) Quartär	h)	i)				
	a) Mitte	elsand, feinsandiç it, schwer zu boh	g, ren, grau , Quartär	•					
4.40	b)					nass Benzingeruch bis			
4.10	c) dich	t	d) schwer zu bohren	e) grau		2,7 m chemischer Geruch			
	f)		g) Quartär	h)	i)				
¹) Eir	ntragung r	immt der wissens	chaftliche Bearbeiter vor.						

	orton Bookson	Bericht:								
			fur Bo	ohrungen ohne durchgeher	nde Gewinnur	ng von geker	nten Proben	Az.:		
Bauvorh	naber	n: Hall	en Mönchengladb	pach				Data		
Bohru	ıng	Nı	RKS S1-15	/Blatt 2				Datum 15.0	: 6.2011	
1				2			3	4	5	6
	a)	Bene und E	nnung der Boden: Beimengungen	art			Bemerkungen	E	ntnom Prob	
Bis	b)		nzende Bemerkun	gen ¹)			Sonderprobe Wasserführung Bohrwerkzeuge			Tiefe
unter Ansatz-			haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang				Art	Nr.	in m (Unter-
punkt		Üblic		g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a)	Mitte dicht								
	b)									
5.00	c)	dicht		d) schwer zu bohren	e) grau		nass			
	f)			g) Quartär	h)	i)				
	a)									
	b)									
	c)			d)	e)					
	f)			g)	h)	i)				
	a)									
	b)									
	c)			d)	e)					
	f)			g)	h)	i)				
	a)				1	'				
	b)									
	c)			d)	e)					
	f)			g)	h)	i)				
	a)				-1	1				
	b)									
	c)			d)	e)		-			
	f)			g)	h)	i)				
1)				haftliche Rearbeiter vor						


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-16	Bearb.: von der Bruck				

Höhenmaßstab 1:50

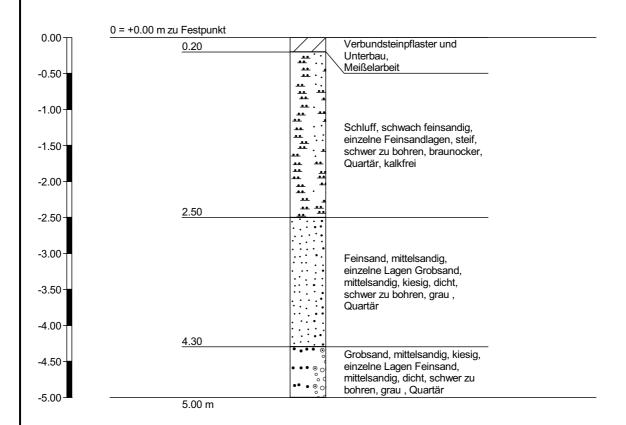
	Ochici iteri ver Zerori i ilo													
			für Bo	ohrui	ngen ohne durchgehen	de Ge	ewinnun	ig von geker	nten Proben	A	z.:			
Bauvorh	nabe	n: Hall	len Mönchengladt	oach										
Bohru	ıng	Nı	RKS S1-16	/Blat	t 1					D	atum: 15.06	5.2011	.2011	
1					2				3		4	5	6	
	a)		ennung der Boden Beimengungen	art					Bemerkungen		Er	ntnomr Probe		
Bis	b)		nzende Bemerkur	ngen	1)				Sonderprobe				T: 6	
m unter	c)	Besc	haffenheit	d)	Beschaffenheit	e)	Farbe		Wasserführung Bohrwerkzeuge		Art	Nr.	Tiefe in m	
Ansatz- punkt			Bohrgut	, ,	nach Bohrvorgang	′		2) 17-11-	Kernverlust Sonstiges				(Unter- kante)	
	τ)	Üblic Bene	ne ennung	g)	Geologische ¹) Benennung	h)	¹) Gruppe	i) Kalk- gehalt						
	a)	Betor Meiß	n, elarbeit											
	b)													
0.20	-			٦/					Bohrpunkt 1x versetzt (+ 0,5 m))				
	c)			d)	Meißelarbeit	e)								
	f)			g)		h)		i)						
	a)		l, kiesig, sehr wer											
	b)	mitte	ldicht, mittel zu b	onre	n, braun, grau, Auffüllu	ıng								
0.60									erdfeucht					
	c)	mitte	ldicht	d)	mittel zu bohren	e)	braun,	grau	Graiouchi					
	f)			g)	Auffüllung	h)		i)						
	a)	Schlusteif,												
	b)			erdfeucht,										
2.80	c)	steif		d)	mittel zu bohren	e)	braunc	ocker, grau	lagenweise Klopfnässe					
	f)			g)	Quartär	h)		i)						
	a)	Feins lager	sand, mittelsandig nweise Schluff, fe	j, insar	ndig, dicht, schwer zu	bohre	en, grau	, Quartär						
4.40	b)	lager	nweise Schluff, fe	insar	ndig				feucht, ab 3,3 m					
4.40	c)	dicht		d)	schwer zu bohren	e)	grau		Benzingeruch, lagenweise stark					
	f)			g)	Quartär	h)		i)						
	a)	Grob dicht	sand, mittelsandi , schwer zu bohre	g, ki en, g	esig, rau , Quartär									
	b)								nass					
5.00	c)	dicht		d)	schwer zu bohren	e)	grau		leichter Benzingeruch					
	f)			g)	Quartär	h)		i)						
1) Ein	trag	una ni	mmt der wissensc	haftl	iche Bearbeiter vor.								-	


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-17	Bearb.: von der Bruck				

Höhenmaßstab 1:50

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben											Bericht:			
Bauvort	nabei	n: Hall	len Mönchengladt	nach						7 (2					
Bohru				/Blat							Datum: 15.06.2011				
1					2				3		4	5	6		
Die	a)		ennung der Boden Beimengungen	art					Bemerkungen	Entnommene Proben					
Bis	b)	Ergäi	nzende Bemerkun	gen	1)				Sonderprobe Wasserführung				Tiefe		
unter Ansatz-	c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust Sonstiges		۸rt	Nr.	in m (Unter-		
punkt	f)	Üblic Bene	he nnung	g)	Geologische ¹) Benennung	h)	¹) Gruppe	i) Kalk- gehalt					kante)		
	a)	Verb Meiß	undsteinpflaster u elarbeit	ınd l	Jnterbau,										
	b)														
0.20	c)	c)			Meißelarbeit	e)									
	f)			g)		h)		i)							
0.50	Sand, kiesig, sehr wenig Schlacke, mitteldicht, mittel zu bohren, braun, Auffüllung														
	b)				.,, 5. 22.,, 7 (2.1.22				-						
	c)	mitte	ldicht	d)	mittel zu bohren	e)	braun		feucht						
	f)			g)	Auffüllung	h)		i)							
	a)		uff, schwach feins n, mittel zu bohre												
0.00	b)	-							feucht, lagenweise Klopfnässe	Э					
2.80	c)	weich	า	d)	mittel zu bohren	e) braunocker, graubraun			zum Liegenden schach kalkhaltig						
	f)			g)	Quartär	h)		i) 0							
	a) b)	Feins dicht	sand, mittelsandig , schwer zu bohre	feucht, ab 3,3 m											
4.40	c)	dicht		d)	schwer zu bohren	e)	grau		nass bis 3,5 m Benzingeruch						
	f)			g)	Quartär	h)		i)	-						
		Grob einze		g, ki nd,	esig, mittelsandig, dicht, sch	wer	zu bohr	en, grau ,							
5.00	b)		elne Lagen Feinsa	nd,	mittelsandig				- nass						
0.00	c)	dicht		d)	schwer zu bohren	e)	grau								
	f)			g)	Quartär	h)		i)							
1) =:					iche Rearbeiter vor						_				

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 Projekt: Hallen Mönchengladbach Projekt: Pr	Datum: 15.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-18	Bearb.: von der Bruck		

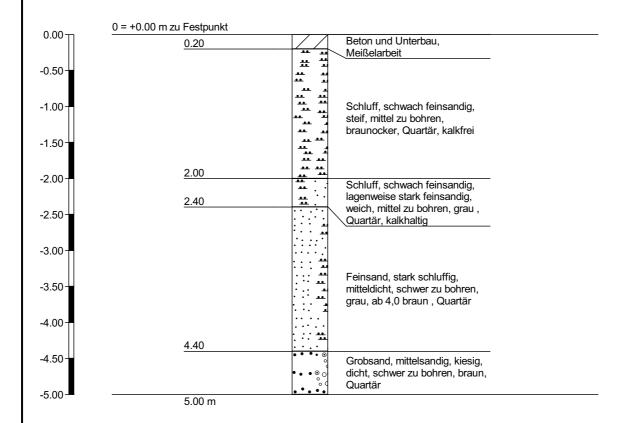


Höhenmaßstab 1:50

			für Bo	rnten Proben	Berich	t:						
Bauvort	habei	n· Hali	len Mönchengladt	nach						7.2		
Bohru				/Blatt	: 1					Datum: 15.06.2011		
1					2				3	4	5	6
Dia	a)		ennung der Boden Beimengungen	art					Bemerkungen	Entnommene Proben		
Bis	b)	Ergä	nzende Bemerkun	ngen	¹)				Sonderprobe Wasserführung			Tiefe
unter Ansatz-	c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter-
punkt	f)	Üblic Bene	he nnung	g)	Geologische ¹) Benennung	h)	¹) Gruppe	i) Kalk- gehalt				kante)
	a)	Verbundsteinpflaster und Unterbau, Meißelarbeit										
	b)											
0.20	c)	c)			Meißelarbeit	e)						
	f)			g)		h)		i)	-			
	a)		I, kiesig, wenig So	ke, en, grau , Auffüllung			+					
0.40	b)		idioni, convoi 2a	50111	on, graa , ranamang				_			
	c)	mitte	teldicht d) schwer zu bohren				grau		erdfeucht			
	f)			g)	Auffüllung	h)		i)	-			
	a)	Schluff, schwach feinsandig, steif, mittel zu bohren, braunocker, Quartär, kalkfrei										
	b)								erdfeucht			
2.80	c)	steif		d)	mittel zu bohren	e)	braund	ocker	bis 0,7 m grau			
	f)			g)	Quartär	h)		i) 0				
	a) b)	Mitte dicht	lsand, feinsandig, , schwer zu bohre	en, g	rau , Quartär				facility of 2.2 m			
4.00	c)	dicht		d)	schwer zu bohren	e)	grau		feucht, ab 3,3 m nass			
	f)			g)	Quartär	h)		i)	_			
	a)	Grob einze		g, kie Ind, r	esig, nittelsandig, dicht, sch	wer	zu bohr	en, grau ,				
5.00	b)		tar elne Lagen Feinsa	ınd, r	mittelsandig				nass			
5.00	c)	dicht		d)	schwer zu bohren	e)	grau		nass			
	f)			g)	Quartär	h)		i)	1			
1)	_			tri:	che Bearbeiter vor							

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 Projekt: Hallen Mönchengladbach Projekt: Pr	Datum: 15.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-19	Bearb.: von der Bruck		

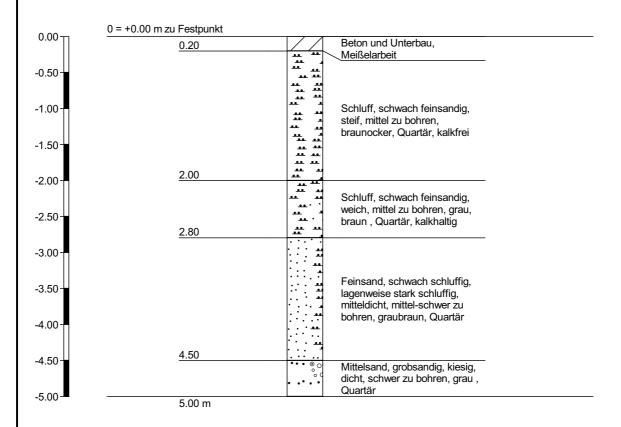
RKS S1-19



Höhenmaßstab 1:50

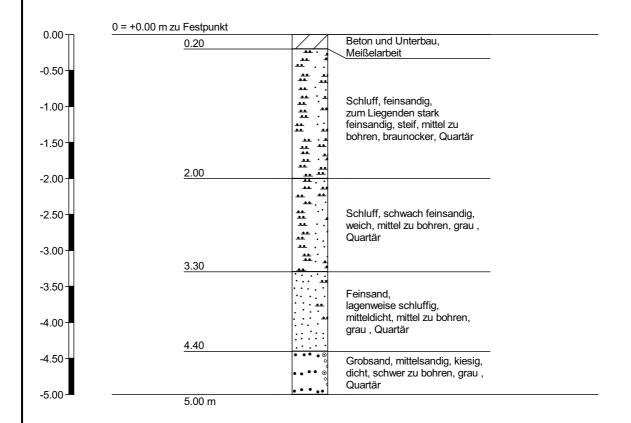
				Schichtenverzeichnis								ericht:		
			für Bo	hru	ngen ohne durchgehend	de G	ewinnur	ıg vo	n geker	nten Proben	A	z.:		
Bauvorl	naber	n: Hall	en Mönchengladt	ach										
Bohru	ıng	Nr	RKS S1-19	/Blat	t 1						D	atum: 15.06	5.2011	
1					2					3		4	5	6
			nnung der Boden Beimengungen	art						Bemerkungen	Entnommene Proben			
Bis m			nzende Bemerkur	gen	1)					Sonderprobe Wasserführung				Tiefe
unter Ansatz-	,		naffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe	e Bohrwerkz Kernverl Sonstig				Art	Nr.	in m (Unter- kante)
punkt		Üblicl Bene	ne nnung	g)	Geologische ¹) Benennung	h)	¹) Gruppe	i)	Kalk- gehalt					Karite)
	a)		undsteinpflaster u elarbeit	ınd l	Jnterbau,									
0.00	b)													
0.20	c)			d)	Meißelarbeit	e)								
	f)			g)		h)		i)						
	a)	Schluff, schwach feinsandig, einzelne Feinsandlagen, steif, schwer zu bohren, braunocker, Quartär, kalkfrei												
2.50	b)		einzelne Feinsandlagen							trocken-erdfeucht				
	c)	steif		d)	schwer zu bohren	e)	braund	cke	r	Trockerr-erdreucht				
	f)			g)	Quartär	h)		i)	0					
	a) Feinsand, mittelsandig, einzelne Lagen Grobsand, mittelsandig, kiesig, dicht, schwer zu													
4.30	l hì		en, grau , Quartäi Ine Lagen Grobs		mittelsandig, kiesig					feucht, ab 3,3 m nass chemischer				
4.50	c)	dicht		d)	schwer zu bohren	e)	grau			Geruch				
	f)			g)	Quartär	h)		i)						
		Grob einze Quar		g, ki nd,	esig, mittelsandig, dicht, sch	wer	zu bohr	en, g	grau ,					
5.00	b)	einze	lne Lagen Feinsa	nd,	mittelsandig					nass leichter chemische	er			
	c)	dicht		d)	schwer zu bohren	e)	grau			Geruch				
	f)			g)	Quartär	h)		i)						
	a)													
	b)													
	c)		d) e)											
	f)			g)		h)		i)						
¹) Eir	ntragu	ıng niı	nmt der wissensc	haftl	iche Bearbeiter vor.									

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 Projekt: Hallen Mönchengladbach Projekt: Pr	Datum: 30.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-20	Bearb.: von der Bruck		


RKS S1-20

Höhenmaßstab 1:50

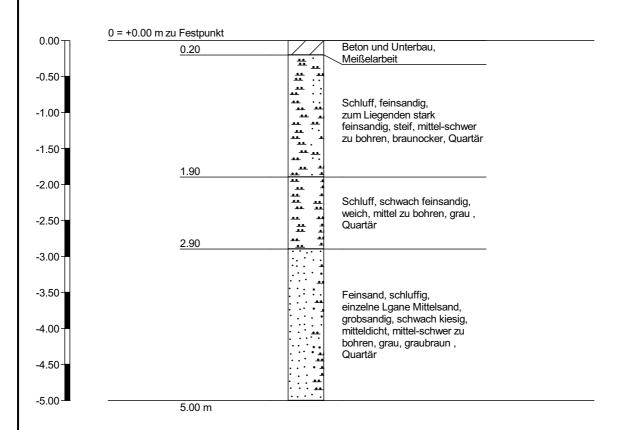
	000										Bericht:				
			tür Bo	ohru	ngen ohne durchgehen	de G	ewinnun	ig vo	n geker	nten Proben	Az	<u>.</u> .:			
Bauvorh	nabe	n: Hall	len Mönchengladt	ach											
Bohru	ıng	Nı	r RKS S1-20	/Blat	t 1							Datum: 30.06.2011			
1					2					3		4	5	6	
	a)		ennung der Boden	art						Pomorkungon	Entnomr				
Bis	b)		Beimengungen nzende Bemerkur	aen	1)					Bemerkungen Sonderprobe			Probe	2 11	
m				_						Wasserführung Bohrwerkzeuge				Tiefe in m	
unter Ansatz-	(c)) Beschaffenheit nach Bohrgut			Beschaffenheit nach Bohrvorgang	e)	Farbe			Kernverlust		Art	Nr.	(Unter-	
punkt	f)	Üblic		g)	Geologische ¹) Benennung		¹) Gruppe	i)	Kalk- gehalt	Sonstiges				kante)	
	a)	Betor	n und Unterbau,		<u> </u>										
	b)	ivieiis	elarbeit												
0.20	, D)														
0.20	c)	c)			Meißelarbeit	e)									
	f)			g)		h)		i)							
	a)	a) Schluff, schwach feinsandig,													
	 	steif,	mittel zu bohren,	bra	unocker, Quartär, kalkt	frei				_					
2.00 -	b)									erdfeucht					
	c)	steif		d)	mittel zu bohren	e)	braunc	ocke	r	Benzingeruch					
	f)			g)	Quartär	h)		i)	0						
	a)	a) Schluff, schwach feinsandig, lagenweise stark feinsandig, weich, mittel zu bohren, grau , Quartär,													
	b)	kalkhaltin								feucht, lagenweise	9				
2.40		iagei	weise stark leins	anu	9 					Klopfnässe chemischer					
	(c)	weich	า	d)	mittel zu bohren	e)	grau			Geruch					
	f)			g)	Quartär	h)		i)	+						
	a)	Feins	sand, stark schluf	fig, boh	ren, grau, ab 4,0 braur	1 . O	uartär	ı							
	b)				, g. aa, az - , e z. aa.	., ~				feucht, ab 3,2 m					
4.40	c)	mitte	ldicht	d)	schwer zu bohren	(e)	grau, a	ab 4,	0	chemischer Geruch bis 4,0 m					
	f)	mille	iuici it	g)		h)	braun	i)		,					
				9)	Quartär	,		,							
	a)		sand, mittelsandi , schwer zu bohre												
	b)														
5.00	c)	dicht		d)	schwer zu bohren	e)	braun			nass					
	f)			g)	Quartär	h)		i)							
1) Fin	ntradi	ına ni	mmt der wissensc	haftl	iche Bearbeiter vor.					1				1	


Zeichnerische Darstellung von Bohrprofilen	Anlage:		
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 Projekt: Hallen Mönchengladbach Projekt: Pr	Datum: 30.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-21	Bearb.: von der Bruck		

Höhenmaßstab 1:50

				Bericht	:				
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geke	rnten Proben	Az.:		
Bauvorl	naben: H	lallen Mönchengladl	bach						
Bohru	ıng	Nr RKS S1-21	/Blatt 1				Datum: 30.0	6.2011	
1			2			3	4	5	6
		nennung der Boden d Beimengungen	art			Bemerkungen	E	mene en	
Bis		gänzende Bemerkur	ngen ¹)			Sonderprobe			Tiefe
m unter	c) Be	schaffenheit	d) Beschaffenheit	e) Farbe		Wasserführung Bohrwerkzeuge		Nr.	Tiefe in m
Ansatz- punkt		ch Bohrgut liche	nach Bohrvorgang	h) ¹)	i) Kalk-	Kernverlust Sonstiges			(Unter- kante)
<u> </u>	,	nennung	g) Geologische ¹) Benennung	Gruppe	gehalt				
		ton und Unterbau, eißelarbeit							
	b)								
0.20	c)		d) Meißelarbeit	e)		_			
					I .s	_			
	f)		g)	h)	i)				
		hluff, schwach feins eif, mittel zu bohren	sandig, , braunocker, Quartär, kalki						
	b)								
2.00	c) oto	ir.	d)	erdfeucht					
	Ste	eit 	miller zu bonren	e) braund		_			
	f)		^{g)} Quartär	h)	i) 0				
		hluff, schwach fein: ich, mittel zu bohre	sandig, n, grau, braun , Quartär, ka						
2.80	b)			feucht, lagenweise Klopfnässe	Э				
2.00	c) we	eich	d) mittel zu bohren	e) grau, t	oraun	Nophiasse			
	f)		g) Quartär	h)	i) +				
	a) Fe	insand, schwach so lenweise stark schli	chluffig, uffig, mitteldicht, mittel-sch	wer zu bohre	en.				
	b) gra	aubraun, Quartär			,	feucht, ab 3,2 m			
4.50		jenweise stark schl	_	Ι,		chemischer Geruch von 2,8 bi	ie.		
	c) mi	tteldicht	d) mittel-schwer zu bohren	e) graubr	aun	3,0	5		
	f)		g) Quartär	h)	i)				
		ttelsand, grobsandiç ht, schwer zu bohr							
	b)								
5.00	c) did	:ht	d) schwer zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
¹) Eir	- ntragung	nimmt der wissensc	chaftliche Bearbeiter vor.	•	•				

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 Projekt: Hallen Mönchengladbach Projekt: Pr	Datum: 30.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-22	Bearb.: von der Bruck		

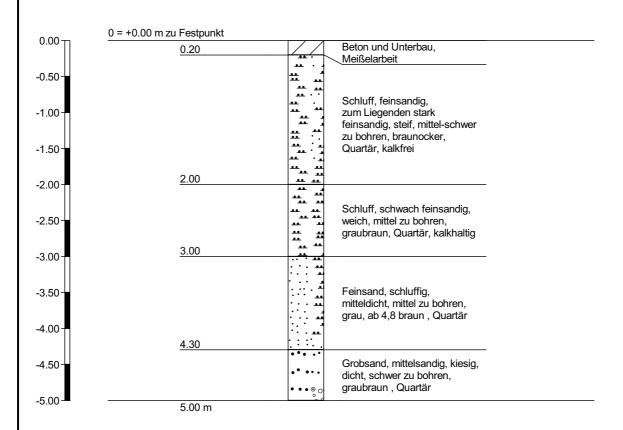


Höhenmaßstab 1:50

			Ochlichter		Bericht:				
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von gekei	rnten Proben	Az.:		
Bauvorh	naben: H	allen Mönchengladl	bach						
Bohru	ıng İ	Nr RKS S1-22	/Blatt 1			Datum: 30.06		: 6.2011	
1			2			3	4	5	6
		nennung der Boden d Beimengungen	art			Bemerkungen	E	mene en	
Bis		jänzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			
unter Ansatz-		schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	Tiefe in m (Unter- kante)
punkt		liche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				
		on und Unterbau, ißelarbeit							
	b)								
0.20	c)		d) Meißelarbeit	e)					
	f)		g)	h)	i)				
	zur	nluff, feinsandig, n Liegenden stark artär	feinsandig, steif, mittel zu b						
2.00	zur	n Liegenden stark	feinsandig			erdfeucht			
2.00	c) ste	if	d) mittel zu bohren	e) braund	ocker				
	f)		g) Quartär	h)	i)				
	a) Sc we	nluff, schwach feins ich, mittel zu bohre	sandig, n, grau , Quartär						
	b)			feucht 3,0-3,3 chemische	er				
3.30	c) we	ich	d) mittel zu bohren	e) grau		Geruch			
	f)		g) Quartär	h)	i)				
	a) Fei lag		mitteldicht, mittel zu bohren	, grau , Qua	rtär				
4.40	b) lag	enweise schluffig				nass chemischer			
7.40	c) mit	teldicht	d) mittel zu bohren	e) grau		Geruch bis 3,8			
	f)		g) Quartär	h)	i)				
		obsand, mittelsandi ht, schwer zu bohr							
	b)								
5.00	c) dic	ht	d) schwer zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
¹) Ein	ntragung	nimmt der wissensc	chaftliche Bearbeiter vor.						

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 Projekt: Hallen Mönchengladbach Projekt: Pr	Datum: 30.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-23	Bearb.: von der Bruck		

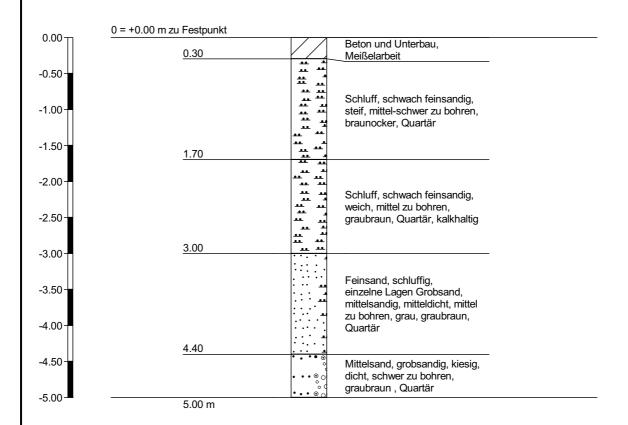
RKS S1-23



Höhenmaßstab 1:50

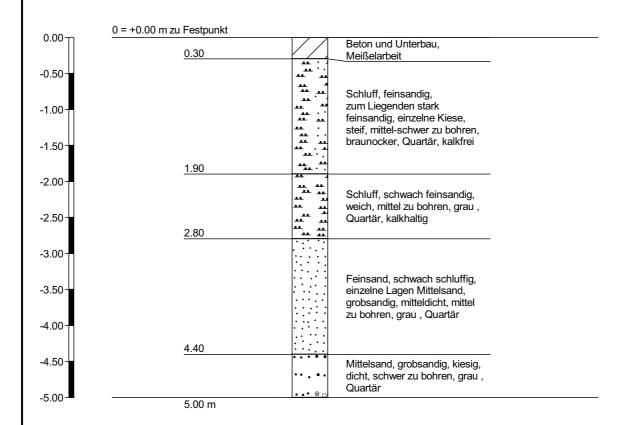
SCNICNTENVERZEICNNIS für Bohrungen ohne durchgehende Gewinnung von gekernten Proben									Bericht:			
					de Cewii ii id	ng von geke	THEFT TODGIT	Az.:				
Bauvort	nabe	n: Hal	len Mönchengladb	pach				Datum:				
Bohru	ıng	N	r RKS S1-23	Blatt 1					6.2011			
1				2			3	4	5	6		
<u> </u>	a)		ennung der Boden: Beimengungen	art			Bemerkungen	Entnommene Proben				
Bis	b)	Ergä	nzende Bemerkun	gen ¹)			Sonderprobe Wasserführung			Tiefe		
unter Ansatz-	c)		haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)		
punkt	f)	Üblic Bene	he ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Solistiges			Karile)		
	a)		n und Unterbau, elarbeit									
	b)											
0.20	c)			d) Meißelarbeit	e)							
	f)			g)	h)	i)						
1.90	a)	zum		einsandig, steif, mittel-sch								
	b)		nocker, Quartär Liegenden stark f	einsandig			andfarraht					
	c)	steif		d) mittel-schwer zu bohren	e) braun	ocker	erdfeucht					
	f)			g) Quartär	h)	i)						
	a)		uff, schwach feins h, mittel zu bohrei									
2.90	b)						feucht, lagenweise	9				
2.90	c)	weicl	h	d) mittel zu bohren	e) grau		Klopfnässe					
	f)			g) Quartär	h)	i)						
	a)	einze		and, grobsandig, schwach		eldicht,						
F 00	b)			en, grau, graubraun , Quart and, grobsandig, schwach			feucht, ab 3,2 m nass chemischer					
5.00	c)	mitte	ldicht	d) mittel-schwer zu bohren	e) grau,	graubraun	Geruch von 3,0 -3,3 m					
	f)			g) Quartär	h)	i)						
	a)				•	•						
	b)											
	c)	c) d) e)										
	f)			g)	h)	i)						
1) =:				haftliche Rearbeiter vor	-	-						

Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 30.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-24	Bearb.: von der Bruck				


RKS S1-24

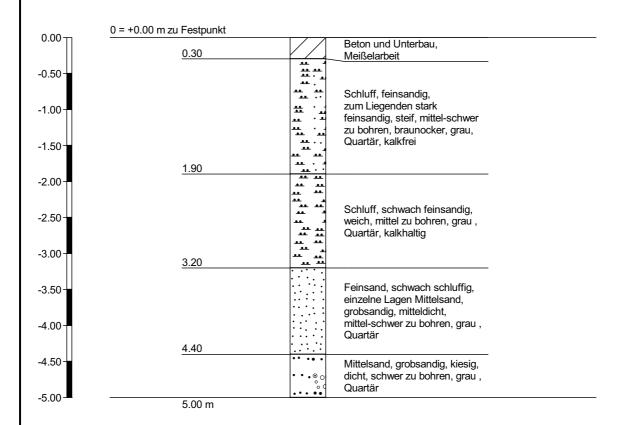
Höhenmaßstab 1:50

			Scriicitiei				Bericht:				
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geke	rnten Proben	Az.:				
Bauvorl	naben:	Hallen Mönchengladt	oach								
Bohru	ıng	Nr RKS S1-24	/Blatt 1				Datum: 30.06	6.2011			
1			2			3	4	5	6		
		enennung der Boden nd Beimengungen	art			Bemerkungen	E	ntnomr Probe			
Bis		rgänzende Bemerkur	ngen 1)			Sonderprobe			T: of o		
m unter	c) B	eschaffenheit	d) Beschaffenheit	e) Farbe		Wasserführung Bohrwerkzeuge		Nr.	Tiefe in m		
Ansatz- punkt		ach Bohrgut Ibliche	nach Bohrvorgang	h) ¹)	i) Kalk-	Kernverlust Sonstiges			(Unter- kante)		
<u> </u>	, -	enennung	g) Geologische ¹) Benennung	Gruppe	gehalt						
		eton und Unterbau, leißelarbeit									
	b)					-					
0.20	c)		d) Maigalantait	e)		-					
			Meißelarbeit	"	1	-					
	f)		g)	h)	i)						
		chluff, feinsandig,									
2.00	b)	um Liegenden stark t raunocker, Quartär, l	feinsandig, steif, mittel-sch kalkfrei	_							
	zı	um Liegenden stark f	feinsandig			erdfeucht leichter					
2.00	c) s	teif	d) mittel-schwer zu e) braunocker Lösemittelgeruch								
	f)		g) Quartär	h)	i) 0						
		chluff, schwach feins reich, mittel zu bohre	sandig, n, graubraun, Quartär, kalk								
3.00	b)			feucht chemischer							
3.00	c) w	veich	d) mittel zu bohren	e) graubr	aun	Geruch					
	f)		g) Quartär	h)	i) +						
	a) F	einsand, schluffig, nitteldicht, mittel zu b	ohren, grau, ab 4,8 braun ,	Quartär							
4.30	b)					nass chemischer					
4.30	c) m	nitteldicht	d) mittel zu bohren	e) grau, a braun	ab 4,8	Geruch bis 3,8 m					
	f)		g) Quartär	h)	i)						
	a) G	Grobsand, mittelsandi	g, kiesig, en, graubraun , Quartär								
F 00	b)										
5.00	c) d	icht	d) schwer zu bohren	e) graubr	aun	nass					
	f)		g) Quartär	h)	i)						
¹) Eir	ntragun	g nimmt der wissensc	haftliche Bearbeiter vor.								


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 30.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-25	Bearb.: von der Bruck				

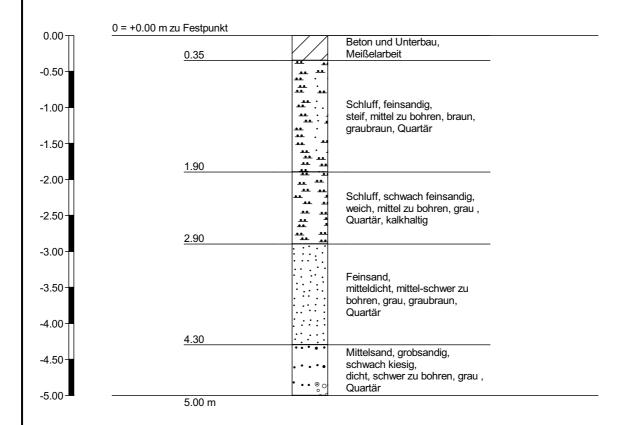
Höhenmaßstab 1:50

			Scriicitiei				Bericht:			
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geke	nten Proben	Az.:			
Bauvort	naben: Ha	allen Mönchengladl	oach							
Bohru	ıng N	Ir RKS S1-25	/Blatt 1				Datum: 30.00	6.2011		
1			2			3	4	5	6	
	a) Ben und	ennung der Boden Beimengungen	art			Bemerkungen	E	ntnom Probe		
Bis		änzende Bemerkur	ngen ¹)		Sonderprobe Wasserführung			Tiefe		
unter Ansatz-		chaffenheit h Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
punkt	f) Übli Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Solistiges			Karile)	
		on und Unterbau, ßelarbeit								
	b)									
0.30	c)		d) Meißelarbeit	e)						
	f)		g)	h)	i)					
		luff, schwach feins f. mittel-schwer zu	andig, bohren, braunocker, Quart	tär						
	b)	,		erdfeucht						
1.70	c) stei	f	d) mittel-schwer zu bohren e) braunoo		ocker	leichter chemische Geruch	er			
	f)		g) Quartär	h)	i)					
		luff, schwach feins ch, mittel zu bohre	sandig, n, graubraun, Quartär, kalk							
0.00	b)			feucht chemischer						
3.00	c) wei	ch	d) mittel zu bohren	mittel zu bohren e) graubraun						
	f)		g) Quartär	h)	i) +					
	einz	nsand, schluffig, relne Lagen Grobs u, graubraun, Qua	and, mittelsandig, mitteldicl tär	ht, mittel zu l	bohren,	-				
4.40	b) einz	elne Lagen Grobs	and, mittelsandig			nass leichter chemische	er			
4.40	c) mitt	eldicht	d) mittel zu bohren	e) grau, (graubraun	Geruch				
	f)		g) Quartär	h)	i)					
	a) Mitt dich	elsand, grobsandiç it, schwer zu bohro	g, kiesig, en, graubraun , Quartär							
F 00	b)									
5.00	c) dich	nt	d) schwer zu bohren	e) graubr	aun	nass				
	f)		g) Quartär	h)	i)					
¹) Ein	ntragung r	nimmt der wissensc	haftliche Bearbeiter vor.							


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 30.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-26	Bearb.: von der Bruck				

Höhenmaßstab 1:50

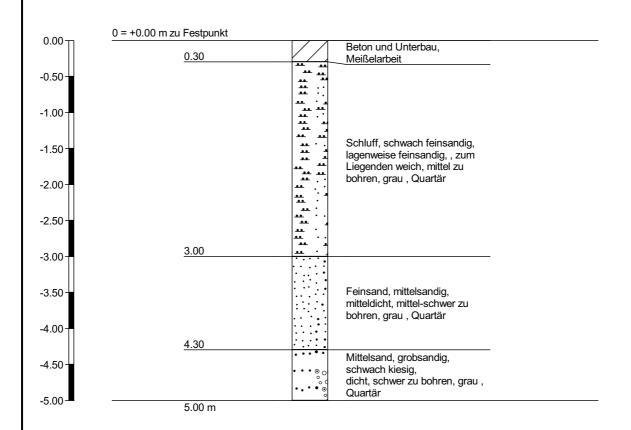
Schichtenverzeichnis										Bericht:			
			für Bo	hrungen ohne durchgehe	nde G	ewinnur	ng von geke	rnten Proben	Az	::			
Bauvorh	nabe	n: Hal	len Mönchengladb	pach					_				
Bohru	Bohrung Nr RKS S1-26 /Blatt 1									ntum: 30.06	.2011		
1				2				3		4	5	6	
	a)	Bene und E	ennung der Boden: Beimengungen	art				Bemerkungen		Entnommene Proben			
Bis	b)		nzende Bemerkun	Sonderprobe Wasserführung				Tiefe					
unter Ansatz-	c)		haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter-	
punkt	f)	Üblic Bene	he ennung	g) Geologische ¹) Benennung	h)	1) Gruppe	i) Kalk- gehalt					kante)	
	a)		n und Unterbau, elarbeit										
	b)							-					
0.30	c)			d) Meißelarbeit	e)			_					
	f)			g)	h)		i)						
	a)	zum		einsandig, einzelne Kiese									
1.90	b)		en, braunocker, C Liegenden stark f	erdfeucht									
	c)	steif	-	d) mittel-schwer zu bohren	e)	braund	ocker	leichter Lösemittelgeruch					
	f)			g) Quartär	h)		i) 0	_					
	a)		uff, schwach feins h, mittel zu bohrei										
	b)	110.0.	ii, mittoi Lu Boili oi	feucht									
2.80	c)	weicl	h	d) mittel zu bohren	e)	e) grau		leichter chemischer Geruch					
	f)			g) Quartär	h)		i) +	_					
	a)	einze		chluffig, and, grobsandig, mitteldic	cht, mi	ittel zu k	oohren,						
4.40	b)	•	, Quartär elne Lagen Mittels	and, grobsandig				feucht, ab 3,2 m nass leichter chemische	0.0				
4.40	c)	mitte	ldicht	d) mittel zu bohren	e)	grau		Geruch	er				
	f)			g) Quartär	h)		i)						
	a)		lsand, grobsandiç , schwer zu bohre	g, kiesig, en, grau , Quartär			•						
	b)												
5.00	c)	dicht		d) schwer zu bohren	e)	grau		- nass					
	f)			g) Quartär	h)		i)						
1\	. 			haftliche Bearbeiter vor			1	I				1	


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 30.06.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S1-27	Bearb.: von der Bruck				

Höhenmaßstab 1:50

				Bericht:						
		für B	ohrungen ohne durchgehen	ide Gewinnur	ng von geke	rnten Proben	Az.:			
Bauvorh	haben: Ha	llen Mönchenglad	bach							
Bohru	ung N	r RKS S1-27	/Blatt 1				Datum: 30.06	6.2011		
1			2			3	4	5	6	
		ennung der Boder Beimengungen	nart			Bemerkungen	Entnommene Proben			
Bis		inzende Bemerku	ngen ¹)			Sonderprobe Wasserführung			Tiefe	
m unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
punkt	f) Üblid Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				Karite)	
		on und Unterbau, Selarbeit								
	b)									
0.30	c)		d) Meißelarbeit	e)						
	f)		g)	h)	i)					
	zum	luff, feinsandig, Liegenden stark	feinsandig, steif, mittel-sch							
	I b)	ınocker, grau, Qu Liegenden stark		<u> </u>						
1.90	c) steif	:	d) mittel-schwer zu bohren	ocker, grau	erdfeucht					
	f)		g) Quartär	h)	i) 0					
		luff, schwach fein ch, mittel zu bohre	sandig, en, grau , Quartär, kalkhalti							
3.20	b)			feucht leichter chemische						
3.20	c) weid	ch	d) mittel zu bohren	e) grau		Geruch von 2,6 bi 3,0 m	S			
	f)		g) Quartär	h)	i) +					
	einz	sand, schwach se elne Lagen Mittels ren, grau , Quartä	sand, grobsandig, mitteldich	nt, mittel-sch	wer zu					
4.40	I h)	elne Lagen Mittels				nass				
4.40	c) mitte	eldicht	d) mittel-schwer zu bohren	e) grau						
	f)		g) Quartär	h)	i)					
	a) Mitte dich	elsand, grobsandi t, schwer zu bohr	g, kiesig, en, grau , Quartär							
F 00	b)									
5.00	c) dich	t	d) schwer zu bohren	e) grau		nass				
	f)		g) Quartär	h)	i)					
1) Eir	ntragung n	immt der wissensc	chaftliche Bearbeiter vor.				'			

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 30.06.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-28	Bearb.: von der Bruck			

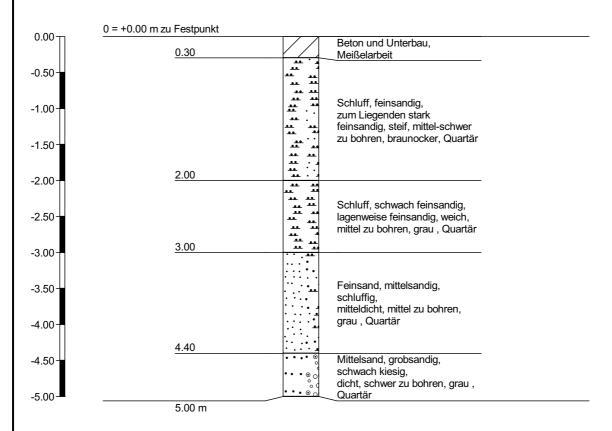


Höhenmaßstab 1:50

			Scriicitei				Bericht	:			
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geker	nten Proben	Az.:				
Bauvort	naben: Ha	allen Mönchengladl	oach								
Bohru	ıng N	Nr RKS S1-28	/Blatt 1				Datum: 30.06.2011				
1			2			3	4	5	6		
		iennung der Boden Beimengungen	art			Bemerkungen	E	Entnommene Proben			
Bis		änzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe		
m unter	c) Bes	chaffenheit	d) Beschaffenheit	e) Farbe		Bohrwerkzeuge		Nr.	in m		
Ansatz- punkt		h Bohrgut iche	nach Bohrvorgang g) Geologische 1)	h) ¹)	i) Kalk-	Kernverlust Sonstiges			(Unter- kante)		
		ennung	Benennung	Gruppe	gehalt						
		on und Unterbau, ßelarbeit									
	b)										
0.35	c)		d) Meißelarbeit	e)							
	f)		g)	h)	i)						
		nluff, feinsandig, f, mittel zu bohren,	braun, graubraun, Quartär								
	b)			erdfeucht							
1.90	c) stei	f	d) mittel zu bohren	e) braun,	graubraun	chemischer Geruch					
	f)		g) Quartär	h)	i)						
		nluff, schwach feins ch, mittel zu bohre	sandig, n, grau , Quartär, kalkhaltig								
2.90	b)			feucht							
2.50	c) wei	ch	d) mittel zu bohren	e) grau		chemischer Gerud	ch				
	f)		g) Quartär	h)	i) +						
	a) Feir mitt		ver zu bohren, grau, graubi	raun, Quartä	ir						
4.30	b)					nass					
1.00	c) mitt	eldicht	d) mittel-schwer zu bohren	e) grau, g	graubraun						
	f)		g) Quartär	h)	i)						
	a) Mitt dich	elsand, grobsandiç nt, schwer zu bohr	g, schwach kiesig, en, grau , Quartär			-					
	b)										
5.00	c) dich	nt	d) schwer zu bohren	e) grau		nass					
	f)		g) Quartär	h)	i)						
¹) Ein	tragung i	nimmt der wissensc	haftliche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 30.06.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S1-29	Bearb.: von der Bruck			

RKS S1-29

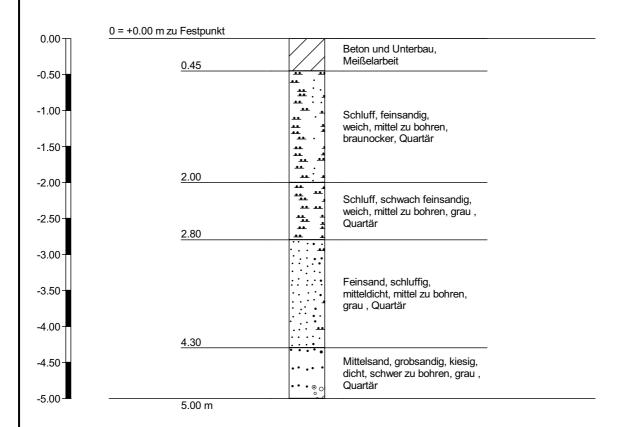

Höhenmaßstab 1:50

					Bericht:									
			für Bo	hru	ngen ohne durchgehen	de G	Sewinnur	ng von geker	nten Proben	Az.:				
Bauvorh	nabe	n: Hall	len Mönchengladt	ach										
Bohru	ıng	Nı	r RKS S1-29	/Blat	t 1					Datum: 30.06.2011				
1					2				3		4	5	6	
	a)	Benennung der Bodenart und Beimengungen							Bemerkungen		Entnommene Proben			
Bis	b)		nzende Bemerkur	Sonderprobe				T: 6						
m unter	(c)	Besc	haffenheit	d)	Beschaffenheit	e)	Farbe		Wasserführung Bohrwerkzeuge		Art	Nr.	Tiefe in m	
Ansatz- punkt	Ĺ	nach	Bohrgut		nach Bohrvorgang	<u> </u>			Kernverlust Sonstiges				(Unter- kante)	
pu	f)	Üblic Bene	he ennung	g)	Geologische ¹) Benennung	h)	¹) Gruppe	i) Kalk- gehalt						
	a)		n und Unterbau, elarbeit											
	b)													
0.30	c)			d)		(e)								
	()			u)	Meißelarbeit	(-)								
	f)			g)		h)	1	i)						
	a)	Schlı	uff, schwach feins	and	ig,									
	b)	Quar	nweise feinsandig tär											
3 00	D)	lager	nweise feinsandig						erdfeucht, zum Liegenden feucht					
3.00	c)	, zun weich	n Liegenden h	mittel zu bohren grau					starker chemische Geruch	er				
	f)			g)	Quartär	h)	ı	i)						
	a)	Feins mitte												
4.00	b)			feucht, ab 3,2 m nass chemischer										
4.30	c)	mitte	ldicht	d)	mittel-schwer zu bohren	e)	grau		Geruch bis 3,9 m					
	f)			g)	Quartär	h)	l	i)						
	a)		lsand, grobsandiç , schwer zu bohre											
	b)													
5.00	c)	dicht	:	d)	schwer zu bohren	e)	grau		nass					
	f)			g)	Quartär	h)	l	i)						
	a)													
	b)													
	c)			d)		e)	ı		_					
	f)			g)		h)	l	i)						
1) Ein	ntrag	ung ni	mmt der wissensc	haftl	iche Bearbeiter vor.									

Z eichner	rische Darstellung von Bohrprofilen	Anlage:
nach DIN	1 4023	Datum: 30.06.2011
_{ojekt:} Halle	n Mönchengladbach	Projektnummer:
aiald.	RKS S1-30	Bearb.: von der Bruck
	DI/O 04 00	
	RKS S1-30	
0.00	0 = +0.00 m zu Festpunkt	
-0.50	Beton, Meißelarbeit	
	Höhenmaßstab 1:50	

		Bericht:							
		Tui B	Sohrungen ohne durchgeher	ide Gewiiiildi	ig von gekei	THEFT TODET	Az.:		
Bauvorh	naben: F	lallen Mönchenglad	lbach				Deture		
Bohru	ıng	Nr RKS S1-30		Datum: 30.06	6.2011				
1			3	4	5	6			
	a) Be un	nennung der Boder d Beimengungen	nart			Bemerkungen	E	mene en	
Bis		gänzende Bemerku	ngen ¹)			Sonderprobe			
unter Ansatz-		schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr.	Tiefe in m (Unter- kante)
punkt	f) Üb Be	oliche enennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Sonstiges			Karite)
	a) Be Me	eton, eißelarbeit							
	b)					Bohrpunkt 1x			
0.45	c)		d) Meißelarbeit	e)		versetzt (+0,45 Stemmen)			
	f)		g) h) i)						
	a)		1						
	b)								
	c) d) e)								
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)		1						
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)					1			
	c)		d)	e)					
	f)		g)	h)	i)				
1) Fin	tradiind	nimmt der wissens	chaftliche Bearbeiter vor.	1	1	1			

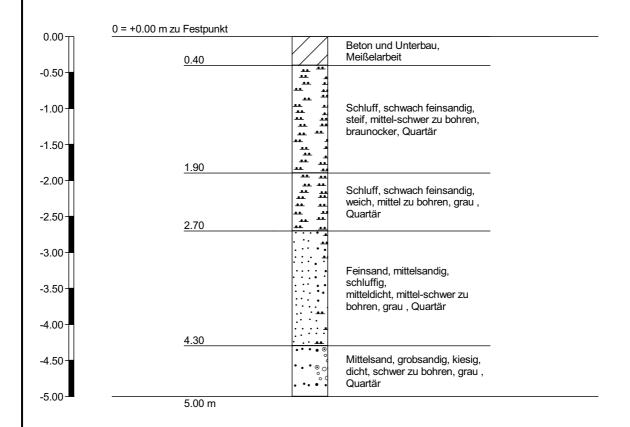
Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 30.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-31	Bearb.: von der Bruck		



Höhenmaßstab 1:50

			Ochloriter	IVGIZGIC	111113		Bericht:			
		für Bo	ohrungen ohne durchgehend	de Gewinnur	ng von gekei	nten Proben	Az.:			
Bauvorl	haben: H	allen Mönchengladl	oach							
Bohru	ung l	Nr RKS S1-31	/Blatt 1				Datum: 30.06	6.2011		
1			2			3	4	5	6	
		nennung der Boden d Beimengungen	art		Bemerkungen	E	ntnomr Probe			
Bis		gänzende Bemerkur	ngen 1)			Sonderprobe			Tiefe	
unter Ansatz-		schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
punkt		liche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Conduged			ranc)	
		ton und Unterbau, ißelarbeit								
	b)	inscial boil								
0.30	c)		d) Meißelarbeit	e)						
	f)		g)	h)	i)					
0.00	zui	hluff, feinsandig, m Liegenden stark f aunocker, Quartär								
	I b)	n Liegenden stark t	feinsandig			erdfeucht				
2.00	c) ste	d) mittel-schwer zu e) n		muffiger Geruch						
	f)		g) Quartär	h)	i)					
		hluff, schwach feins enweise feinsandig								
	b) lag	enweise feinsandig		feucht, lagenweise Klopfnässe						
3.00	c) we	ich	d) mittel zu bohren	e) grau		chemischer Geruch				
	f)		g) Quartär	h)	i)					
		nsand, mittelsandiç teldicht, mittel zu b	g, schluffig, ohren, grau , Quartär							
4.40	b)					nass leichter chemische Geruch bis 3,7 m	er			
1.10	c) mit	teldicht	d) mittel zu bohren	e) grau		Cordon blo c,r iii				
	f)		g) Quartär	h)	i)					
		telsand, grobsandiç ht, schwer zu bohr								
	b)									
5.00	c) dic	ht	d) schwer zu bohren	e) grau		nass				
	f)		g) Quartär	h)	i)					
¹) Eir	ntragung	nimmt der wissensc	haftliche Bearbeiter vor.							

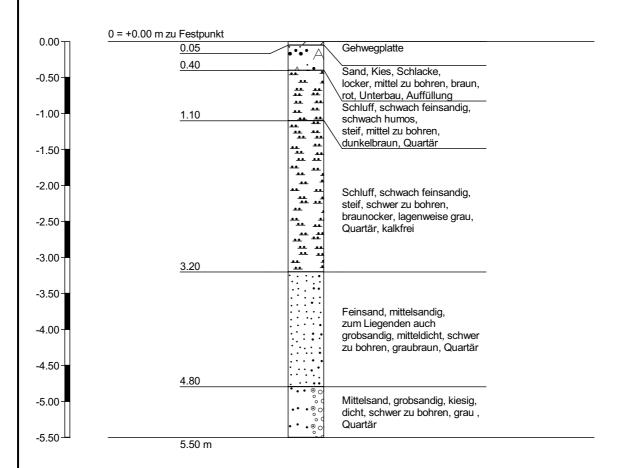
Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 30.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-32	Bearb.: von der Bruck		


RKS S1-32

Höhenmaßstab 1:50

			Scriichter		Bericht:					
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von gekei	nten Proben	Az.:			
Bauvort	naben: Ha	allen Mönchengladl	bach							
Bohru	ıng N	Ir RKS S1-32	/Blatt 1				Datum: 30.0	6.2011		
1			2			3	4	5	6	
		ennung der Boden Beimengungen	art	Bemerkungen	Entnommene Proben					
Bis		änzende Bemerkur	ngen 1)	Sonderprobe Wasserführung			Tiefe			
unter		chaffenheit	d) Beschaffenheit	e) Farbe		Bohrwerkzeuge Kernverlust		Nr.	in m (Unter-	
Ansatz- punkt	f) Übli		g) Geologische 1)	h) 1)	i) Kalk-	Sonstiges			kante)	
		ennung on und Unterbau,	Benennung	Gruppe	gehalt					
	Mei	ßelarbeit								
0.45	b)			Bohrpunkt 1x						
0.45	c)		d) Meißelarbeit	e)		versetzt (+0,45 m Stemmen)				
	f)		g)	h)	i)					
		lluff, feinsandig, ch. mittel zu bohre	n, braunocker, Quartär							
	b)	,	, ,			feucht				
2.00	c) wei		d)	e) bround		chemischer Geruch				
	Weit	ch 	mittei zu bonren	braund	1	Gerucii				
	f)		^{g)} Quartär	h)	i)					
	a) Sch wei	ıluff, schwach feins ch, mittel zu bohre								
2.80	b)				feucht, lagenweise Klopfnässe					
2.00	c) wei	ch	d) mittel zu bohren	e) grau		chemischer Geruch				
	f)		g) Quartär	h)	i)					
	a) Feir mitt	nsand, schluffig, eldicht, mittel zu b	ohren, grau , Quartär			formely 1 0 0				
4.30	b)					feucht, ab 3,2 m nass chemischer				
4.30	c) mitt	eldicht	d) mittel zu bohren	e) grau		Geruch bis 3,8 m				
	f)		g) Quartär	h)	i)					
	a) Mitt dich	elsand, grobsandiç nt, schwer zu bohro	g, kiesig, en, grau , Quartär							
	b)									
5.00	c) dich	nt	d) schwer zu bohren	e) grau		- nass				
	f)		g) Quartär	h)	i)					
¹) Ein	tragung r	nimmt der wissensc	chaftliche Bearbeiter vor.		•					

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 30.06.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-33	Bearb.: von der Bruck		

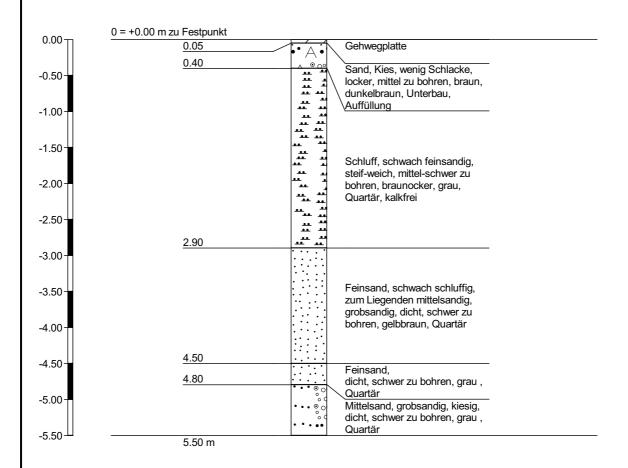


Höhenmaßstab 1:50

Anlage

Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: Bauvorhaben: Hallen Mönchengladbach Datum: Bohrung Nr RKS S1-33 /Blatt 1 30.06.2011 2 3 4 6 1 5 a) Benennung der Bodenart Entnommene und Beimengungen Bemerkungen Proben Bis b) Ergänzende Bemerkungen ¹) Sonderprobe Wasserführung Tiefe . . m Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit unter e) Farbe Art Nr. Kernverlust (Unter-Ansatznach Bohrvorgang nach Bohrgut Sonstiges kante) punkt Übliche g) Geologische 1) h) 1) i) Kalk-Benennung Benennung Gruppe gehalt Beton und Unterbau. Meißelarbeit b) Bohrpunkt 1x 0.40 versetzt (+0,45 m c) e) Stemmen) Meißelarbeit f) h) i) Schluff, schwach feinsandig, steif, mittel-schwer zu bohren, braunocker, Quartär b) erdfeucht 1.90 leichter chemischer d) mittel-schwer zu e) braunocker Geruch steif bohren f) h) i) g) Quartär Schluff, schwach feinsandig, weich, mittel zu bohren, grau, Quartär b) feucht 2.70 chemischer e) grau d) mittel zu bohren Geruch weich f) g) Quartär i) a) Feinsand, mittelsandig, schluffig, mitteldicht, mittel-schwer zu bohren, grau , Quartär feucht, ab 3,2 m b) nass 4.30 chemischer e) grau d) mittel-schwer zu Geruch mitteldicht bohren f) i) g) Quartär h) Mittelsand, grobsandig, kiesig, dicht, schwer zu bohren, grau, Quartär b) 5.00 e) grau c) dicht d) schwer zu bohren f) h) i) g) Quartär 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 01.07.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-34	Bearb.: von der Bruck		

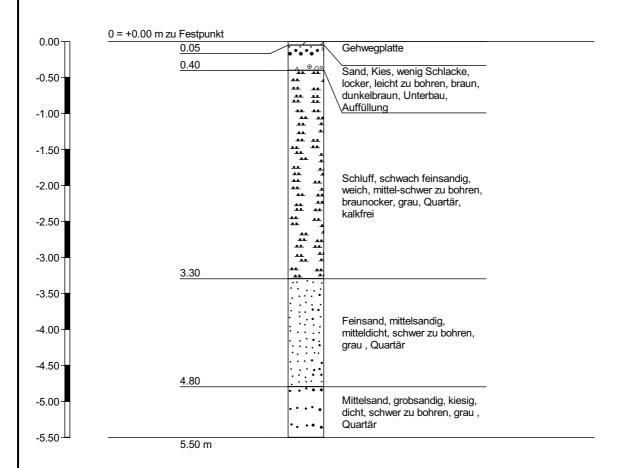


Höhenmaßstab 1:50

				Ochici iter i verzeichi ilis								Bericht:			
			für Bo	ohrui	ngen ohne durchgehen	de G	ewinnur	ng vo	n geker	nten Proben	A:	z.:			
Bauvorh	nabe	n: Hall	en Mönchengladt	oach											
Bohru	ıng	Nı	RKS S1-34	/Blat	t 1						D	atum: 01.07	.2011		
1					2					3		4	5	6	
	a)	Benennung der Bodenart und Beimengungen								Bemerkungen	Entnommene Proben				
Bis	b)		nzende Bemerkur	ngen	1)					Sonderprobe Wasserführung				Tiefe	
unter Ansatz-	c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe			Bohrwerkzeuge Kernverlust		Art	Nr.	in m (Unter-	
punkt	f)	Üblic Bene	he nnung	g)	Geologische ¹) Benennung	h)	¹) Gruppe	i)	Kalk- gehalt	Sonstiges				kante)	
	a)	Gehv	vegplatte												
	b)														
0.05	c)			d)		e)									
	f)			g)		h)		i)							
	a)		l, Kies, Schlacke, er, mittel zu bohre												
0.40	b)		,		,,,,,,,,,,,,,,,,,		<u> </u>								
	c)	locke	er	d)	mittel zu bohren	e)	braun,	rot		feucht					
	f)	Unte	rbau	g)	Auffüllung	h)		i)							
	a)	Schluff, schwach feinsandig, schwach humos, steif, mittel zu bohren, dunkelbraun, Quartär													
	b)									erdfeucht					
1.10	c)	steif		d)	mittel zu bohren	e)	dunke	lbrau	ın						
	f)			g)	Quartär	h)		i)							
	a)	Schlusteif,	uff, schwach feins schwer zu bohre	sand n, br	ig, aunocker, lagenweise	grau	ı, Quarta	är, ka	alkfrei						
3.20	b)									erdfeucht-feucht lagenweise					
3.20	c)	steif		d)	schwer zu bohren	e)	braund lagenv			Klopfnässe					
	f)			g)	Quartär	h)		i)	0						
	a)	zum	sand, mittelsandig Liegenden auch o oraun, Quartär		sandig, mitteldicht, sch	wer	zu bohr	en,							
4.80	b)	-	Liegenden auch (grobs	sandig					erdfoucht					
4.0U	c)	mitte	ldicht	d)	schwer zu bohren	e)	graubr	aun		erdfeucht					
	f)			g)	Quartär	h)		i)							
1) Ein	ntragi	ına ni	mmt der wissensc	haftl	iche Bearbeiter vor.										

			Oci iloi iterivei zeioi ii iis						
		für Bohrungen ohne durchgehende Gewinnung von gekernten Proben							
Bauvorl	haben: Hal	llen Mönchengladl	bach						
Bohru	ung N	r RKS S1-34	/Blatt 2				Datum: 01.07	7.2011	
1			2			3	4	5	6
	a) Bene und	ennung der Boden Beimengungen	art			Bemerkungen	Entnommene Proben		
Bis		nzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)
punkt	f) Üblic Bene	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				1.0.1.0)
	a) Mitte	elsand, grobsandi	g, kiesig,	'					
	b)	t, schwer zu bonr	en, grau , Quartär						
5.50			I	1		nass Direct-Push-Probe	9		
	c) dicht	t	d) schwer zu bohren	e) grau		entnommen			
	f)		g) Quartär	h)	i)				
	a)								
	b)								
	c)	c) d) e)				-			
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
¹) Eir	ntragung ni	immt der wissensc	chaftliche Bearbeiter vor.						

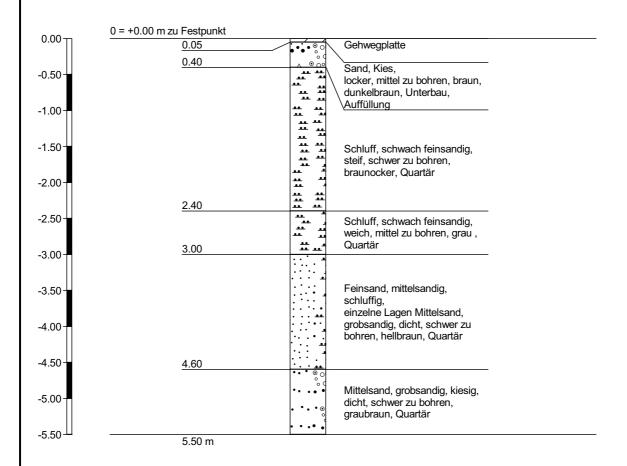
Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 01.07.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-35	Bearb.: von der Bruck		


Höhenmaßstab 1:50

			Ochichten verzeichnis								
		für B	ohrungen ohne durchgehen	de Gewinnur	ng von geke	rnten Proben	Az.:				
Bauvorh	naben: Ha	llen Mönchenglad	bach								
Bohru	ıng N	r RKS S1-35	/Blatt 1				Datum: 01.07	7.2011			
1			2			3	4	5	6		
		ennung der Boder Beimengungen	nart			Bemerkungen	E	ntnomr Probe			
Bis	b) Ergä	nzende Bemerku	ngen ¹)			Sonderprobe			T:-f-		
m unter Ansatz-	,	chaffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust Sonstiges		Nr.	Tiefe in m (Unter- kante)		
punkt	f) Üblid Bend	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				Karile)		
	a) Geh	wegplatte									
	b)					-					
0.05	c)		d)	e)		_					
	f)		g)	h)	i)	_					
		d, Kies, wenig Sc er, mittel zu bohre	hlacke, en, braun, dunkelbraun, Un	terbau, Auffü	illung						
	b)										
0.40	c) lock	er	d) mittel zu bohren	e) braun, dunkel		erdfeucht					
	f) Unte	erbau	g) Auffüllung	h)	i)						
		3) Schluff, schwach feinsandig, steif-weich, mittel-schwer zu bohren, braunocker, grau, Quartär, kalkfrei									
	b)										
2.90	c) steif	-weich	d) mittel-schwer zu bohren	e) braund	ocker, grau	erdfeucht-feucht					
	f)		g) Quartär	h)	i) 0						
	zum		chluffig, sandig, grobsandig, dicht, s	schwer zu bo	hren,						
4.50	I h) ~	braun, Quartär Liegenden mittel	sandig, grobsandig			- feucht					
7.50	c) dich	t	d) schwer zu bohren	e) gelbbra	aun	ISUCIIL					
	f)		g) Quartär	h)	i)						
	a) Fein dich		en, grau , Quartär								
4.00	b)					feucht					
4.80	c) dich	t	d) schwer zu bohren	e) grau		Grundwasser auf 4,0 m ansteigend					
	f)		g) Quartär	h)	i)						
1) Ein	tragung n	immt der wissenso	chaftliche Bearbeiter vor.								

			Scriichter				Bericht	:	
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geker	nten Proben	Az.:		
Bauvorl	haben: Hal	len Mönchengladl	oach						
Bohru	ung N	r RKS S1-35	/Blatt 2				Datum: 01.0	7.2011	
1			2			3	4	5	6
	a) Bene und l	ennung der Boden Beimengungen		Bemerkungen	Entnommene Proben				
Bis		nzende Bemerkur	ngen 1)			Sonderprobe Wasserführung			Tiefe
m unter	c) Beschaffenheit d) Beschaffenheit e) Farbe					Bohrwerkzeuge Kernverlust	Art	Nr.	in m (Unter-
Ansatz- punkt	f) Üblic	Bohrgut	nach Bohrvorgang g) Geologische ¹)	h) ¹)	i) Kalk-	Sonstiges			kante)
	Bene	ennung	Benennung	Gruppe	gehalt				
	a) Mitte dicht	elsand, grobsandiç i, schwer zu bohr	g, kiesig, en, grau , Quartär						
	b)		-			nass			
5.50	c) dicht	<u> </u>		Direct-Push-Probe	Э				
	f)		g) Quartär	h)	i)				
	a)		1	•					
	b)								
	c) d) e)								
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)			•					
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
¹) Eir	ntragung ni	mmt der wissensc	haftliche Bearbeiter vor.						

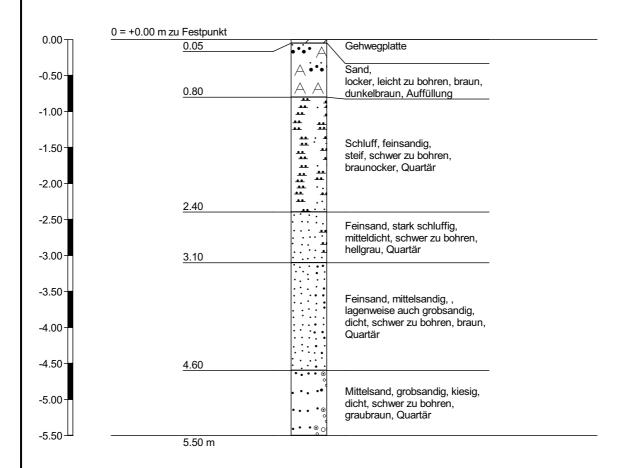
Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 01.07.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-36	Bearb.: von der Bruck		


RKS S1-36

Höhenmaßstab 1:50

		Bericht:							
		für B	ohrungen ohne durchgeher	nde Gewinnur	ng von geke	rnten Proben	Az.:		
Bauvorh	haben: F	lallen Mönchenglad	lbach						
Bohru	ung	Nr RKS S1-36	/Blatt 1				Datum: 01.07	7.2011	
1			2			3	4	5	6
	a) Be un	nennung der Boder d Beimengungen	nart			Bemerkungen	E	ntnomr Probe	
Bis	b) Er	gänzende Bemerku	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)
punkt	. /	liche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				1101110)
	a) Ge	ehwegplatte							
	b)					-			
0.05	c) d) e)								
	f)		g)	h)	i)	-			
		nd, Kies, wenig Sc ker. leicht zu bohre	⊔ hlacke, en, braun, dunkelbraun, Un	iterbau. Auffü	ılluna				
	b)	,	, ,	-					
0.40	c) loc	ker	d) leicht zu bohren	e) braun, dunkel		erdfeucht			
	f) Ur	iterbau	g) Auffüllung	h)	i)				
		hluff, schwach fein ich, mittel-schwer	sandig, zu bohren, braunocker, gra						
0.00	b)]					
3.30	c) we	ich	d) mittel-schwer zu bohren	e) braund	ocker, grau	feucht			
	f)		g) Quartär	h)	i) 0				
	a) Fe mi	insand, mittelsandi tteldicht, schwer zu	g, ı bohren, grau , Quartär						
4.00	b)					feucht, ab 3,5 m			
4.80	c) mi	tteldicht	d) schwer zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
	a) Mi dio	ttelsand, grobsandi ht, schwer zu bohr	g, kiesig, ren, grau , Quartär						
	b)					nass			
5.50	c) dic	cht	d) schwer zu bohren	e) grau		- Direct-Push-Probe entnommen	9		
	f)		g) Quartär	h)	i)				
	ntragung	nimmt der wissens	chaftliche Bearbeiter vor.						

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 01.07.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-37	Bearb.: von der Bruck		



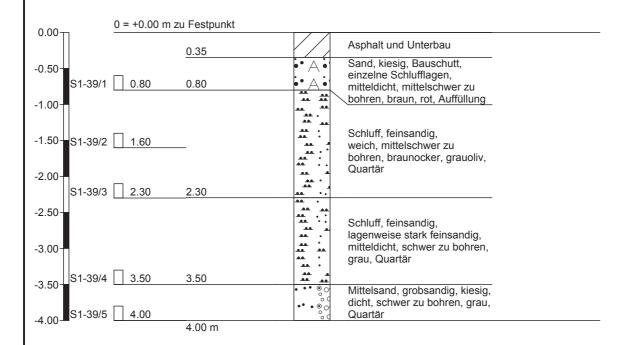
Höhenmaßstab 1:50

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben									Bericht:			
			Tui Bo	onitungen onne durcingener	ide Gewi	illiulig	y voir gekei	nten Froben	Az.:				
Bauvorh	nabe	n: Hal	len Mönchengladt	oach									
Bohru	ıng	Nı	RKS S1-37	/Blatt 1					Datum: 01.07.2011				
1				2				3	4	5	6		
	a)		ennung der Boden Beimengungen	art				Bemerkungen	Entnommene Proben				
Bis	b) Ergänzende Bemerkungen ¹)						Sonderprobe			T: 6			
m unter Ansatz-	c)		haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Fa	arbe		Wasserführung Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	Tiefe in m (Unter- kante)		
punkt	f)		he ennung	g) Geologische ¹) Benennung	h) ¹) ippe	i) Kalk- gehalt	Constiges			Karic)		
	a)	Gehv	vegplatte										
	b)												
0.05	Ĺ			T	1.								
	(c)	c) d) e)											
	f)			g)	h)		i)						
	a)		I, Kies, er, mittel zu bohre	una									
	b)												
0.40	c)			d) mittal zu bahran	e) br	roup.		erdfeucht					
	L ()	locke	er	mittel zu bohren		unkelb	raun						
	f)	Unte	rbau	g) Auffüllung	h)		i)						
	a)		uff, schwach feins schwer zu bohre	sandig, n, braunocker, Quartär									
0.40	b)			15. 14									
2.40	c)	steif		d) schwer zu bohren	e) braunocker			erdfeucht					
	f)			g) Quartär	h)		i)						
	a)		uff, schwach feins n, mittel zu bohre		1								
	b)												
3.00	c)	weicl	า	d) mittel zu bohren	e) gr	au		feucht					
	f)			g) Quartär	h)		i)						
	a)	einze	sand, mittelsandig elne Lagen Mittels raun, Quartär	n,									
	b)		raun, Quartar elne Lagen Mittels	and, grobsandig				feucht, ab 4,2 m					
4.60	c)	dicht		d) schwer zu bohren	e) he	ellbrau	ın	nass					
	f)			g) Quartär	h)		i)						
1) Ein	ntrani	una ni	mmt der wissensc	haftliche Bearbeiter vor.				-		-			

	Ochici iteri ver Zerori i ilo									richt:		
		für B	ohru	ngen ohne durchgehen	de G	ewinnun	g von geke	rnten Proben	Az.	:		
Bauvor	haben: Ha	llen Mönchenglad	bach									
Bohru	ung N	r RKS S1-37	/Blat	t 2						tum: 01.07	.2011	
1				2				3		4	5	6
	a) Ben- und	ennung der Boden Beimengungen	art					Bemerkungen	Entnom Prob			
Bis		b) Ergänzende Bemerkungen ¹)						Sonderprobe Wasserführung				Tiefe
unter Ansatz-		chaffenheit n Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter- kante)
punkt	f) Üblio Ben	che ennung	g)	Geologische ¹) Benennung	h)	1) Gruppe	i) Kalk- gehalt					Kartoj
	a) Mitte	elsand, grobsandi	g, kie	esig,								
	b)	t, scriwer zu borir	en, g	raubraun, Quartär				_				
5.50			nass Direct-Push-Prob	е								
	c) dicht d) schwer zu bohren e) graubraun						entnommen					
	f)		g)	Quartär	h)		i)					
	a)											
	b)											
	c)	c) d) e)										
	f)		g)		h)		i)					
	a)											
	b)											
	c)		d)		e)							
	f)		g)		h)		i)					
	a)											
	b)											
	c)	d) e)										
	f)		g)		h)		i)					
	a)											
	b)											
	c)		d)		e)							
	f)		g)		h)		i)					
¹) Eir	ntragung n	immt der wissensc	haftl	iche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 01.07.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-38	Bearb.: von der Bruck		

Höhenmaßstab 1:50

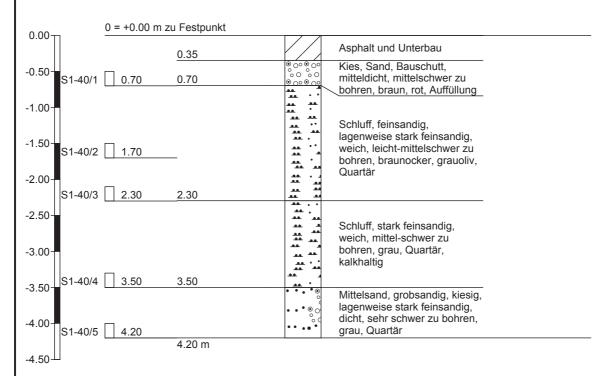

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben									Berich	t:	
			iui bo	Jiliui	igen offile durchgenend	ue G	ewiiiiui	ig von geker	nten Proben	Az.:		
Bauvorh	nabe	n: Hall	len Mönchengladt	oach								
Bohru	ıng	Nı	r RKS S1-38	/Blat	t 1					Datum: 01.07.2011		
1					2				3	4	5	6
	a)		ennung der Boden Beimengungen	art					Bemerkungen	Entnommene Proben		
Bis	b) Ergänzende Bemerkungen ¹)						Sonderprobe		T			
m unter Ansatz-	c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Wasserführung Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr	Tiefe in m (Unter- kante)
punkt	f)		he nnung	g)	Geologische ¹) Benennung		¹) Gruppe	i) Kalk- gehalt	Solistiges			Karite)
	a)	Gehv	vegplatte									
	b)											
0.05	c) d) e)											
	f)			g)		h)		i)	_			
a) Sand, locker, leicht zu bohren, braun, dunkelbraun, Auffüllung												
	b)											
0.80	c)	c) locker			leicht zu bohren	e)	braun, dunkel	braun	erdfeucht			
	f)			g)	Auffüllung	h)		i)				
	a)	Schlusteif,	uff, feinsandig, schwer zu bohre	n, br	raunocker, Quartär							
0.40	b)							1				
2.40	c)	steif		d)	schwer zu bohren	e) braunocker			erdfeucht			
	f)			g)	Quartär	h)		i)				
	a)	Feins mitte	sand, stark schluf ldicht, schwer zu	fig, bohi	ren, hellgrau, Quartär							
0.40	b)											
3.10	c)	mitte	ldicht	d)	schwer zu bohren	e)	hellgra	u	erdfeucht			
	f)			g)	Quartär	h)		i)				
a) Feinsand, mittelsandig, , lagenweise auch grobsandig, dicht, schwer zu bohren, braun, Quartär												
4.60	b)	lager	nweise auch grob	sand	lig				feucht, ab 4,4 m			
7.00	c)	dicht		d)	schwer zu bohren	e)	braun		nass			
	f)			g)	Quartär	h)		i)				
1\ Ein	trog	ına ni	mmt dar wicconco	haftl	iche Bearbeiter vor.							

Anlage
Bericht:

			Bericht	:							
		für B	ohrungen ohne durchgehen	de Gewinnur	ng von gekei	nten Proben	Az.:				
Bauvorl	Bauvorhaben: Hallen Mönchengladbach										
Bohru	ung N	r RKS S1-38	/Blatt 2				Datum 01.0	7.2011			
1			2			3	4	5	6		
	a) Bene und	ennung der Boden Beimengungen	art			Bemerkungen	Entnommene Proben				
Bis		nzende Bemerkur	ngen 1)			Sonderprobe			Tiefe		
m unter		chaffenheit	d) Beschaffenheit	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr.	in m (Unter-		
Ansatz- punkt		nach Bohrgut nach Bohrvorgang Übliche g) Geologische 1) h) 1) i) Kalk-				Sonstiges			kante)		
	Bene	ennung	Benennung	Gruppe	gehalt			<u> </u>			
	a) Mitte dicht	elsand, grobsandig t, schwer zu bohr	g, kiesig, en, graubraun, Quartär								
	b)					nass					
5.50	c) dicht		d)	e) graubr		Direct-Push-Probe	е				
	dicin	<u> </u>	schwer zu bohren	aun	enthornmen						
	f)		g) Quartär	h)	i)						
	a)		1								
	b)										
	c) d) e)										
	f)	f) g) h) i)									
	a)			•							
	b)										
	c)		d)	e)							
	f)		g)	h)	i)						
	a)										
	b)					_					
	c)		d)	e)							
	f)		g)	h)	i)						
	a)										
	b)										
	c) d) e)										
	f)		g)	h)	i)						
1) Eir	ntragung ni	mmt der wissensc	chaftliche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 25.07.2012		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-39	Bearb.: von der Bruck		

RKS S1-39

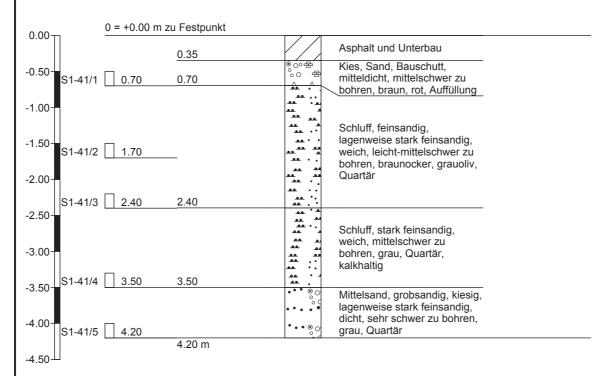

Höhenmaßstab 1:50

Anlage Bericht:

				Bericht					
		für Bo	hrungen ohne durchgehen	de Gewinnu	ıng von gek	ernten Proben	Az.:		
Bauvorl	haben: Ha	allen Mönchengla	dbach						
Bohru	ıng N	r RKS S1-39	/Blatt 1				Datum 25.0	: 7.2012	2
1			2			3	4	5	6
		ennung der Bode Beimengungen	nart			Bemerkungen	E	ntnomi Probe	
Bis		inzende Bemerkı	ungen 1)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-	-,	chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)
punkt	f) Üblid Bend	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				nanto)
	a)	halt und Unterba			J - 1				
	b)		<u> </u>						
0.35	c)		d)						
	f)		g)	h)	i)				
	a) San	d, kiesig, Bausch	nutt, einzelne Schlufflagen					S1- 39/1	0.80
	b)								
0.80	c) mitte	eldicht	d) mittelschwer zu bohren	e) braun	, rot	trocken-erdfeuch	t		
	f)		g) Auffüllung	h)	i)				
	a) Schl	uff, feinsandig				S1- 39/2	1.60		
	b)					S1- 39/3	2.30		
2.30	c) weic	ch	d) mittelschwer zu bohren	e) braun grauo		feucht			
	f)		g) Quartär	h)	i)				
	a) Schl	uff, feinsandig, la	agenweise stark feinsandi	g				S1- 39/4	3.50
0.50	b)					15 14			
3.50	c) mitte	eldicht	d) schwer zu bohren	e) grau		erdfeucht			
	f)		g) Quartär	h)	i)				
	a) Mitte	elsand, grobsand	lig, kiesig				С	S1- 39/5	4.00
4.00	b)					feucht, ab 3,9 m			
4.00	c) dich	t	d) schwer zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
¹) Eir	ntragung r	nimmt der wissen	schaftliche Bearbeiter vor.						

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 25.07.2012		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S1-40	Bearb.: von der Bruck		

RKS S1-40


Höhenmaßstab 1:50

Anlage
Bericht:

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: Bauvorhaben: Hallen Mönchengladbach Datum: Bohrung Nr RKS S1-40 /Blatt 1 25.07.2012 2 3 4 6 a) Benennung der Bodenart Entnommene und Beimengungen Bemerkungen Proben Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . m Bohrwerkzeuge in m c) Beschaffenheit unter d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt g) Geologische ¹) Benennung h) 1) Übliche i) Kalk-Asphalt und Unterbau b) 0.35 d) c) e) f) h) i) 0.70 S1-Kies, Sand, Bauschutt 40/1 b) 0.70 erdfeucht e) braun, rot d) mittelschwer zu c) mitteldicht bohren f) h) i) g) Auffüllung 1.70 S1-Schluff, feinsandig 40/2 S1-2.30 40/3 lagenweise stark feinsandig 2.30 feucht d) leicht-mittelschwer e) braunocker, c) weich zu bohren grauoliv f) h) g) Quartär a) Schluff, stark feinsandig S1-3.50 40/4 b) 3.50 erdfeucht e) grau c) weich d) mittel-schwer zu bohren f) i) + g) Quartär h) С S1-4.20 Mittelsand, grobsandig, kiesig 40/5 lagenweise stark feinsandig feucht, ab 4,0 m 4.20 nass d) sehr schwer zu e) grau c) dicht bohren f) h) i) g) Quartär 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023	Anlage:
	Datum: 25.07.2012
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S1-41	Bearb.: von der Bruck

RKS S1-41

Höhenmaßstab 1:50

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage Bericht:

Az.: Bauvorhaben: Hallen Mönchengladbach Datum: Bohrung Nr RKS S1-41 /Blatt 1 25.07.2012 1 2 3 4 6 a) Benennung der Bodenart Entnommene und Beimengungen Bemerkungen Proben Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . m Bohrwerkzeuge in m c) Beschaffenheit unter d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt g) Geologische ¹) Benennung Übliche h) 1) i) Kalk-Asphalt und Unterbau b) 0.35 d) c) e) f) h) i) 0.70 S1-Kies, Sand, Bauschutt 41/1 b) 0.70 erdfeucht e) braun, rot d) mittelschwer zu c) mitteldicht bohren f) h) i) g) Auffüllung 1.70 S1-Schluff, feinsandig 41/2 S1-2.40 41/3 lagenweise stark feinsandig 2.40 feucht d) leicht-mittelschwer e) braunocker, weich zu bohren grauoliv f) h) i) g) Quartär a) Schluff, stark feinsandig S1-3.50 41/4 b) feucht, lagenweise 3.50 Klopfnässe e) grau d) mittelschwer zu weich bohren f) i) + g) Quartär h) С S1-4.20 Mittelsand, grobsandig, kiesig 41/5 lagenweise stark feinsandig feucht, ab 3,9 m 4.20 nass d) sehr schwer zu e) grau c) dicht bohren f) h) i) g) Quartär 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

TEIL C

SANIERUNGSBEREICH 2: EHEMALIGER GENERATORENPRÜFSTAND, REME-WEST

C 1 Ergebnisse der Voruntersuchungen

Im Rahmen von Gefährdungsabschätzungen, zuletzt durch agus 2010, wurden bei Rammkernsondierungen im Bereich des bis 1992 von der Britischen Rheinarmee genutzten ehemaligen Generatorenprüfstandes sensorische Auffälligkeiten (starker Benzingeruch in der oberen wassergesättigten Bodenzone) festgestellt. Zwei daraufhin entnommene direct-push-Grundwasserproben zeigten stark erhöhte Konzentrationen an BTEX und LAK mit deutlichen Überschreitungen der Prüfwerte nach BBodSchV (1999) bzw. Geringfügigkeitsschwellenwerte nach LAWA (2004), so dass von einer Gefährdung des Schutzgutes Grundwasser auszugehen war und eine Sanierungsuntersuchung erforderlich wurde.

BTEX und LAK haben eine geringere Dichte als Wasser und gehören zu den sogenannten LNAPLs (light non aqueous phase liquids).

C 2 Untersuchungsprogramm

Im Rahmen dieser Sanierungsuntersuchung sollen u.a. der Belastungsbereich abgegrenzt, die Ergebnisse hinsichtlich einer Sanierung bewertet und Sanierungsmöglichkeiten aufgezeigt und hinsichtlich der Kosten und des Nutzens abgewogen werden.

Dazu wurde folgendes Untersuchungsprogramm durchgeführt:

- 23 Rammkernsondierungen zur weiteren Erkundung und Abgrenzung der BTEX-/LAK-Belastung und Entnahme von Bodenproben
- Entnahme von direct-push-Grundwasserproben aus 12 Bohrlöchern,
- Analyse von 34 Bodenproben (18 sensorisch auffällige Proben (Benzingeruch) aus der oberen wassergesättigten Zone, 16 sensorisch unauffällige Proben des darunter folgenden grundwasserführenden Sediments) aus Rammkernsondierungen im Umfeld des ehemaligen Generatorenprüfstandes auf leichtflüchtige aliphatische Kohlenwasserstoffe (LAK), BTEX, LHKW und Naphthalin,
- Analyse der 12 direct-push-Grundwasserproben auf LAK, BTEX, LHKW und Naphthalin,
- Einrichtung zunächst zweier Grundwassermessstellen im Anstrom (GWM 780167) und im näheren GW-Abstrom (GWM 780168, Durchmesser 4 Zoll), nach hier festgestellten erhöhten BTEX-Konzentration im GW-Abstrom Erstellung zusätzlicher 3 Messstellen im weiteren GW-Abstrom durch das Bohrunternehmen F.C. van Dornick GmbH (47546 Kalkar, Wöhrmannstraße 29),
- Beprobung (Pumproben und z.T. Schöpfproben) und Stichtagsmessung aller Messstellen im Gesamtgebiet im Rahmen der Grundwasserkampagnen (vgl. Teil A) am 21./22.08.2012, 20./21.03.2013, 02./05.08.2013, 13./14.02.2014, 08./09.09.2014, 24./25.11.2014 und Untersuchung des Grundwassers auf die vor-Ort-Parameter pH-Wert, elektrische Leitfähigkeit, Redoxpotential und Sauerstoffgehalt sowie auf KW, Phenole, BTEX, LHKW, TOC, Arsen, Schwermetalle, Cyanide, Chlorid, Sulfat, Sulfid, Nitrat, Nitrit, Ammonium (vgl. Tab. A 2-1 bis A 2-7).

C 3 Ergebnisse der Sanierungsuntersuchung

C 3.1 Boden

Der Bodenaufbau entspricht dem "REME-typischen" Bild:

Unter einer weitgehend vorhandenen Versiegelung (Beton, Verbundpflaster) folgt durchgehend eine unterschiedlich zusammengesetzte Anschüttung (Boden, z.T. Bauschutt, Aschen, Schlacken) bis 0,7 bis 1,4 m, max. 1,8 m Tiefe. Das darunter anstehende geogene Sediment bzw. der "gewachsene Boden" besteht zunächst aus Schluffen (Lößmaterial; Grundwasserdeckschicht) meist bis ca. 3 m, max. 4 m Tiefe. Im Liegenden schließen sich grundwasserführende, bis zur Endteufe der Bohrungen (i.d.R. 5 m) vorwiegend sandige Ablagerungen der Rheinterrasse an.

Von den 23 durchgeführten Rammkernsondierungen zeigten die Bohrungen im Bereich und näheren Umfeld des ehem. Generatorenprüfstandes mit den bekannten hohen BTEX-/LAK-Belastungen in RKS W42 und W43 (agus 2010) mehr oder weniger deutliche sensorische Auffälligkeiten (Benzingeruch; vgl. Abb. C 1-1). Diese treten im Bereich des Kapillarsaumes bzw. der oberen wassergesättigten Zone auf (typisch für BTEX und LAK als LNAPLs); das ist im vorliegenden Fall meist der Grenzbereich zwischen Grundwasserdeckschicht und Grundwasserleiter. Der darüber liegende grundwasserfreie Schluff und die darunter liegenden wasserführenden Sande sind unauffällig.

BTEX und LAK haben sich als aufschwimmende Phase vom bisher nicht bekannten Eintragsort in Grundwasserfließrichtung ausgebreitet und sind zu dem festgestellten Belastungsschwerpunkt transportiert worden. Der Eintragsort muss demnach im näheren Anstrombereich des ehem. Generatorenprüfstandes liegen, etwa zwischen den Bohrungen W41, S2-13, S2-14, S2-16 und S2-17 (vgl. Abb. C 1-1).

Die sensorischen Befunde wurden weitgehend durch die Analysen des Bodens und der directpush- Grundwasserproben bestätigt (vgl. Tab. C 2-2 und C 2-1 sowie Kap. C 3.2).

In den untersuchten sensorisch auffälligen Proben aus der oberen wassergesättigten Zone waren BTEX (max. 22 mg/kg), LAK (max. 110 mg/kg) und Naphthalin (max. 3,8 mg/kg) nur im Bereich des ehemaligen Generatorenprüfstandes in deutlichen Konzentrationen nachweisbar, im näheren Umfeld höchstens in Spuren. Das darunter folgende grundwasserführende Sediment ist sensorisch wie analytisch unauffällig (vgl. Tab. C 2-2).

C 3.2 Grundwasser

Eine Grundwassernutzung findet im Bereich des REME-Geländes sowie im näheren Abstrom nicht statt.

Nach den bisherigen Stichtagsmessungen zeichnet sich für den Sanierungsbereich 2 ein sehr geringer hydraulischer Gradient von etwa 1:5000 ab (vgl. Abb. A 1-3 bis A 1-11). Bei einem mit Sanierungsbereich 1 vergleichbaren kf-Wert von 8•10⁻⁴ m/s und einer angenommen Porosität von 20 % bedeutet das eine Abstandsgeschwindigkeit von ca. 25 m/Jahr bei östlicher Fließrichtung.

Stark erhöhte Konzentrationen an LAK (max. 30.000 μ g/l), BTEX (max. 30.000 μ g/l, davon max. 1.200 μ g/l Benzol) und Naphthalin (max. 1.500 μ g/l) sind bisher nur in direct-push-Proben im Bereich des ehemaligen Generatorenprüfstandes und seinem näheren Umfeld gemessen worden.

Das Grundwasser der Messstellen im direkten (GWM 780168) und näheren Abstrom (GWM 780169, 780172 und 780173) war bei den Beprobungskampagnen sensorisch auffällig (mehr oder weniger deutlicher "aromatischer Geruch").

Aber nur in der im Abstrom etwa 20 m entfernt liegenden Messstelle 780168 wurden in Grundwasserschöpf- und -pumpproben zeitweise erhöhte BTEX-Konzentrationen über dem Geringfügigkeitsschwellenwert (GFS; LAWA 2004) festgestellt: 17 bzw. 120 μ g/l im August 2013, 29 bzw. 36 μ g/l im September 2014, 32 bzw. 61 μ g/l im November 2014. Dabei lagen die Benzol-Gehalte mit 6,0 bzw. 5,2 μ g/l nur im November 2014 über dem GFS. Bei den Grundwasserkampagnen im Februar und April 2014 waren keine BTEX nachweisbar.

Aufgrund der bei der ersten Beprobung im August 2013 im direkten Abstrom gemessenen erhöhten BTEX-Konzentrationen wurden im weiteren Abstrom 3 Messstellen neu eingerichtet. Hier sind jeweils nur in Schöpfproben in etwa 50 m Entfernung zeitweise max. 9,8 μ g/l (GWM 780169), in etwa 100 m Entfernung einmal 7,7 μ g/l (GWM 780173) festgestellt worden. Dabei stimmen die Zeitpunkte der messbaren bzw. Maximalgehalte bei den einzelnen Messstellen nicht überein. In Pumpproben waren BTEX hier nicht nachweisbar.

LAK waren nur in den Schöpfproben aus GWM 780168 zeitweise messbar (51 μ g/l am 08.04.2014 und 98 μ g/l am 24.11.2014), in allen anderen Messtellen und bei den anderen Beprobungskampagnen lag die Konzentration unterhalb der Bestimmungsgrenze von 50 μ g/l.

Als Ursache für die Diskrepanz zwischen sensorischen Auffälligkeiten und nicht nachweisbaren BTEX/LAK kommen evtl. die geringen Geruchsschwellen in Frage: z.B. für Diesel und Ottokraftstoffe 1-10 μ g/l, Benzol 1-100 μ g/l, Xylole 16-140 μ g/l (Landesumweltamt Brandenburg (LUA) 2005). Damit liegen hier die Geruchsschwellenwerte z.T. deutlich unter den jeweiligen Bestimmungsgrenzen.

C 4 Bewertung der Untersuchungsergebnisse

Die festgestellte LAK-/BTEX-Belastung ist nach den bisherigen Untersuchungsergebnissen auf den ehemaligen Generatorenprüfstand und das nähere Umfeld (ca. 20 bis <50 m im Abstrom) konzentriert, relevante Schadstoffausbreitungen bzw. eine Gefährdung des Grundwassers im weiteren Abstrom sind dabei nicht erkennbar, Aussagen zu Schadstofffrachten damit nicht möglich. Das ist vermutlich auf folgende Gegebenheiten zurückzuführen:

- seit Aufgabe des Standortes durch die Britische Armee 1992 gelangten keine weiteren LAK-/ BTEX-haltigen Abwässern mehr in den Boden bzw. die wassergesättigte Zone,
- der Schadensbereich ist versiegelt und überdacht, so dass keine Schadstoffverlagerung mit dem Sickerwasser erfolgen kann,

- der hydraulische Gradient und damit die Abstandsgeschwindigkeit sind hier sehr niedrig,
- gleichzeitig kann von einem natürlichen, anaeroben Abbau von LAK und BTEX ausgegangen werden. Ein Indiz dafür sind die Sulfatkonzentrationen im Grundwasser der umgebenden Messstellen (vgl. Abb. C 1-2): im Anstrom (GWM 780167) meist 170 mg/l, im nahen Abstrom (nach etwa 20 m, GWM 780168) ca. 20-40 mg/l, im weiteren Abstrom (nach 50 m, GWM 780169) ca. 50-70 mg/l, im entfernteren Abstrom (nach ca. 100 m, GWM 780173) bzw. Seitenstrom (GWM 780172) 90-140 mg/l.

Mögliche Sanierungszielwerte für BTEX (20 μ g/l = GFS), Benzol (GFS = 1 μ g/l) und LAK (100 μ g/l = GFS für KW-Index) werden schon im näheren Abstrom, d.h. \leq 50 m vom Schadenszentrum entfernt, eingehalten (vgl. Abb. C 1-2).

C 5 Sanierungsmöglichkeiten und Kostenschätzung / Handlungsempfehlungen

Basierend auf den vorliegenden Gegebenheiten werden im folgenden für die Sanierung des festgestellten LAK-/BTEX-Schadens zwei Sanierungsmöglichkeiten vorgestellt, die sowohl von der "Beseitigungsquote" des Schadens als auch von den Kosten zwei Extreme darstellen:

Variante 1:

Herdsanierung, d.h. möglichst vollständiger Austausch des belasteten Bodens auf ca. 500 m² Fläche mittels Sechseck-Spundwaben. Dafür ist ein Teilabriss der Gebäude inkl. des Ausbaus der Bodenplatte und der teils sehr massiven Betonfundamente erforderlich. Je nach Umfang der erforderlichen Abrissarbeiten ist mit Kosten in der Größenordnung von 550.000 bis 600.000 €zu rechnen.

Variante 1		
Position	Preis	
Teilabriss der Gebäude, Ausbau Betonboden und -fundamente	150.000,-	
Baunebenkosten (12,33% der Bausumme) (Planung, Statik, Genehmigungsverfahren, Bauüberwachung)	18.500,-	
Erdarbeiten (Baustelleneinrichtung, Vermessungsarbeiten, Ausschachten bis ca. 2 m, auskoffern des belasteten Bodens mittels Spundwaben weitere 2 m tief (d.h. bis ca. 4 m u. GOK), Rückverfüllung, Gutachterliche Begleitung inkl. Sanierungsplanung, Erstellung A+S-Plan nach DGUV Regel 101-004 (früher BGR 128), Grundwasserüberwachung)	250.000,-	
Pflasterung (~ 500 m² / 33,- €pro m²)	16.500,-	
Entsorgungskosten >Z 2 (~ 1500 t / 50,- €pro t)	75.000,-	
Entsorgungskosten <z (~="" 2="" 20,-="" 900="" t="" t)<="" td="" €pro=""><td>18.000,-</td></z>	18.000,-	
Schwarz-Weiß-Anlage (Miete, Betriebskosten)	15.000,-	
Reifenwaschanlage (Miete, Betriebskosten)	20.000,-	
Sonstige Arbeitsschutzmaßnahmen (Messtechnische Überwachungen, Einsatz umgebungsluftunabhängiger Maschinen etc.)	20.000,-	
Gesamtsumme (netto)	553.000,-	

Variante 2:

Erhaltung (ggf. Ausbesserung) der Versiegelung und Monitored Natural Attenuation (MNA; überwachter natürlicher Rückhalt und Abbau). Grundwasserüberwachung durch etwa halbjährliche Stichtagsmessungen und Beprobungskampagnen im Februar/März (vermuteter GW-Hochstand) und September/Oktober (vermuteter GW-Tiefstand). Zunächst sollte der Untersuchungsumfang (analysierte Parameter und Anzahl der Messstellen) beibehalten werden, d.h. für das gesamte REME-Gelände mit 3 Belastungsschwerpunkten und 4 Sanierungsbereichen.

Variante 2		
Position	Preis	
GW-Stichtagsmessung, -beprobung und -analytik zweimal jährlich für das gesamte REME-Gelände	10.000,-	
GW-Monitoring anteilig für den Sanierungsbereich 2	2.500,-	
Gesamtsumme (netto) pro Jahr	2.500,-	

Weitere, hier nicht näher ausgearbeitete Sanierungsmöglichkeiten wie z.B. Mehrphasenextraktion (MPE) liegen von den Kosten her bei mehreren 100.000 € und damit deutlich näher bei Variante 1 als bei Variante 2.

Basierend auf den genannten Gegebenheiten (Flächenversiegelung, enge Begrenzung des Schadens, im GW-Abstrom BTEX-, Benzol-, LAK-Gehalte nach max. 50 m Entfernung <GFS, keine Grundwassernutzung) ist zum gegenwärtigen Zeitpunkt für den LAK-/BTEX-Schaden im Bereich des ehem. Generatorenprüfstandes keine Notwendigkeit einer aufwändigen und kostenintensiven Sanierung abzuleiten.

Damit sollte aus Gründen der Verhältnismäßigkeit Variante 2 vorgezogen werden. Die dafür erforderlichen Rahmenbedingungen (insbesondere eine intakte Versiegelung) müssen auch im Falle einer Umnutzung der Fläche erhalten bleiben.

Außerdem sollten nicht nur im Bereich der bekannten Schadensherde alle Eingriffe in den Boden oder Entsiegelungsmaßnahmen vermieden werden. Andernfalls müsste während der gesamten Bauzeit einen Begleitung durch einen Bodengutachter erfolgen, da zu befürchten ist, dass sich unter der großflächigen Versiegelung weitere Schadstoffnester befinden (z.B. durch unsachgemäße Ölwechsel etc.).

Anlage C 1

Abbildungen

- Abb. C 1-1: Lageplan der Rammkernsondierungen im Bereich des Generatorenprüfstandes, BTEX-Gehalte in direct-push-Grundwasserproben und sensorische Befunde
- Abb. C 1-2: BTEX-Gehalte in Grundwassermessstellen im Abstrom

Abb. C 1-1: Lageplan der Rammkernsondierungen, sensorische Befunde und BTEX-Gehalte in direct-push-Grundwasserproben

Abb. C 1-2: BTEX- und Sulfatkonzentrationen im Grundwasser der Messtellen im Umfeld des Generatorenprüfstrandes

Anlage C 2

Tabellen

Tab. C 2-1:	Analysenergebnisse der direct-push-Grundwasseruntersuchungen und
	Bewertungsgrundlagen

- Tab. C 2-2: Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)
- Tab. C 2-3: Analysenergebnisse der Grundwasserkampagne vom 08.04.2014 und Bewertungsgrundlagen

Tab. C 2-1: Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen

Rammkernsondieru	ung	S2-1	S2-3	S2-5	S2-6	S2-8	S2-10	S2-11	S2-13	S2-14	S2-16	S2-17	S2-23	W34A	W41	W42	W43	Bewertung	ısgrundlagen
Parameter	Einheit																	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügig- keits- schwellen- wert
LAK	μg/l	1300	2100	1500	1300	100	66	60	220	1300	71	520	66	<50	<50	30000	15000	(200)	(100)
Benzol	μg/l	120	17	8,6	9,4	1,7	0,72	7,7	49	330	4,9	18	0,57	1,5	1,6	520	1200	1	1
Toluol	μg/l	20	57	54	54	8,8	0,82	8,7	27	1300	30	47	5,4	29	16	1800	1000		
Ethylbenzol	μg/l	240	2300	450	1300	110	11	35	130	2500	52	110	18	9,5	4,0	6800	5000		
m-,p-Xylol	μg/l	490	10000	1300	3700	380	94	150	660	9700	200	310	230	21	11	16000	11000		
o-Xylol	μg/l	15	3600	570	150	78	20	38	35	3300	59	69	2,9	19	7,4	5100	3900		
Summe nachgewiesener BTEX	μg/l	890	16000	2400	5200	580	130	240	900	17000	350	550	260	80	40	30000	22000	20	20
Vinylchlorid	μg/l	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	0,72						0,5
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0						
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0						
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50						
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50						
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50						
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	2,3	<0,50	<0,50						10
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50						1 "
Summe nachgewiesener LHKW	μg/l	n.b.	2,3	n.b.	0,72	<5	< 5	<50	<50	10	20								
Naphthalin	μg/l	110	720	190	160	33	15	19	190	440	15	39	27	12	<5	1500	980	2	1

Tab. C 2-2: Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)

Proben-Nr.	Tiefe (cm)	Charakterisierung / Bemerkungen / organoleptischer Befund	LAK C1-C9	втех	LHKW	Naphthalin		
			mg/kg					
S2-1/1	310-420	Quartär, Benzingeruch	110	0,90	n.b.	0,36		
S2-1/2	420-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-2/1	290-320	Quartär, Benzingeruch	36	22	n.b.	2,2		
S2-2/2	410-500	Quartär	<1,0	0,023	n.b.	<0,010		
S2-3/1	220-320	Quartär, leichter Benzingeruch	<1,0	n.b.	n.b.	<0,010		
S2-3/2	400-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-4/1	210-300	Quartär, leichter Benzingeruch	36	4,4	n.b.	2,1		
S2-4/2	420-500	Quartär	<1,0	0,35	n.b.	0,014		
S2-5/1	220-300	Quartär, Benzingeruch	27	n.b.	n.b.	<0,010		
S2-5/2	410-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-6/1	300-410	Quartär, Benzingeruch	57	22	n.b.	3,8		
S2-6/2	410-500	Quartär	<1,0	n.b.	n.b.	0,012		
S2-7/1	200-320	Quartär	<1,0	0,012	n.b.	<0,010		
S2-7/2	320-400	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-8/1	290-400	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-8/2	400-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S -9/1	320-400	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-10/1	300-360	Quartär, leichter Benzingeruch	<1,0	n.b.	n.b.	<0,010		
S2-10/2	360-500	Quartär	<1,0	0,012	n.b.	<0,010		
S2-11/1	270-300	Quartär, fauliger Geruch	<1,0	n.b.	n.b.	<0,010		
S2-11/2	300-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-12/1	280-310	Quartär, fauliger Geruch	<1,0	n.b.	n.b.	<0,010		
S2-12/2	310-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-13/1	240-380	Quartär, leichter Benzingeruch	3,5	n.b.	n.b.	<0,010		
S2-13/2	380-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-14/1	250-360	Quartär, Benzingeruch	23	21	n.b.	2,1		
S2-14/2	360-500	Quartär	<1,0	0,024	n.b.	0,013		
S2-15/1	280-370	Quartär, fauliger Geruch	<1,0	n.b.	n.b.	<0,010		
S2-15/2	370-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-16/1	250-330	Quartär, fauliger Geruch	7,3	n.b.	n.b.	<0,010		
S2-16/2	330-500	Quartär	<1,0	n.b.	0,010	<0,010		
S2-17/1	180-320	Quartär, leichter fauliger Geruch	<1,0	n.b.	n.b.	<0,010		
S2-17/2	320-500	Quartär	<1,0	n.b.	n.b.	<0,010		
S2-20/1	270-310	Quartär, leichter Benzingeruch	<1,0	0,40	n.b.	0,22		
Bewertungs	grundlagen	-		mg	g/kg	•		
		Z 0	-	1	1	-		
LAGA (2004) Zuordnungsw		Z 1	-	1	1	-		
Bodenaushul		Z 2	-	1	1	-		

n.b. = nicht bestimmbar

Tab. C 2-3: Analysenergebnisse der Grundwasserkampagne vom 08.04.2014 und Bewertungsgrundlagen

		780			780168 (2. Beprobung) ²⁾			780172		780173		Bewertung	Bewertungsgrundlagen	
		2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	2 m u. GWO	Schöpfprobe	BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits- schwellenwert
Parameter	Einheit													
KW-Index	μg/l	<100	110	<100	310	<100	<100	260	<100	100	<100	150	200	100
LAK	μg/l	<50	<50	<50	51	56	<50	<50	<50	<50	<50	<50		
Summe nachgewiesener														
BTEX	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	20	20
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	1	1
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
m-,p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener														
LHKW	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	10	20
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0		
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50		
Tetrachlorethen	μg/l	<3,0	<3,0	<3,0	<3,0	<3,0	<3,0	<3,0	<0,50	<0,50	<0,50	<0,50		
Summe nachgewiesener PAK														
(n. EPA)	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,057	n.b.	0,99	n.b.	0,056		
Summe nachgewiesener PAK (n. EPA ohne Naphthalin)	μg/l	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,82	n.b.	n.b.	0,2	0,2
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,17	<0,10	<0,10	2	1
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050		0,01
Chlorid	mg/l	11	-	4,0	-	6,3	8,0	-	10	-	13	-		250
Sulfat	mg/l	63	-	30	-	39	66	-	100	-	96	-		240
Nitrat	mg/l	0,13	-	0,27	-	0,22	0,61	-	3,4	-	0,2	-		
Nitrit	mg/l	<0,050	-	<0,050	-	0,084	<0,050	-	<0,050	-	<0,050	-		
Ammonium	mg/l	1,7	_	1,9	-	0,41	1,2	-	0,57	-	0,84	-		
Sulfid	mg/l	<0,010	_	<0,010	_	<0.010	<0,010	_	<0,010	_	<0,010	-		

¹⁾ 1. Beprobung am 08.04.2014 um 9.30 Uhr nach Klarpumpen, ²⁾ 2. Beprobung am 08.04.2014 um 9.40 Uhr nach weiterem Klarpumpen

Anlage C 3

Beprobungsprotokolle und Prüfberichte SEWA Laborbetriebsgesellschaft m.b.H., Essen

Berichts-Nr.	Berichts-Datum	Untersuchungsumfang
AU 37266	06.05.2011	34 Feststoffproben, 11 Wasserproben (direct push)
AU 42057	01.08.2012	1 Wasserprobe (direct push)
AU 47977	17.04.2014	11 Wasserproben (Grundwasser)

DAP-PL-1236.00

SEWA Laborbetriebsgesellschaft m.b.H Kruppstraße 86 45145 Essen

Stadt Mönchengladbach - Fachbereich Umweltschutz und Entsorgung - Abteilung Bodenschutz z.Hd. Herr Volmer Rathaus Rheydt 41236 Mönchengladbach

Betrifft: Untersuchungsbericht AU37266

hier: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in Mönchengladbach-Lürrip. S 2

Sehr geehrter Herr Volmer,

gemäß Ihrem Auftrag vom 15.04.2011 führten wir für Sie chemische Untersuchungen durch. Der Untersuchungsbericht liegt diesem Schreiben als Anlage bei.

Für Rückfragen stehen wir Ihnen jederzeit gerne zur Verfügung und verbleiben

mit freundlichen Grüßen

Essen, den 06.05.2011

Andrews ferm

Andreas Görner

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Kruppstr. 86 45145 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU37266
Berichtsdatum: 06.05.2011

Projekt: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip. S 2

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 15.04.2011

Probeneingang: 15.04.2011

Untersuchungszeitraum: 15.04.2011 — 06.05.2011

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 34 Feststoffproben

11 Wasserproben

Andreas Görner

Suchreas ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37266 - 1	S2-1/1			
37266 - 2	S2-1/2			
37266 - 3	S2-2/1			
37266 - 4	S2-2/2			
	37266 - 1	37266 - 2	37266 - 3	3726

LAK	mg/kg	110	<1,0	36	<1,0
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Toluol	mg/kg	<0,010	<0,010	<0,025	<0,010
Ethylbenzol	mg/kg	<0,010	<0,010	3,5	<0,010
m/p-Xylol	mg/kg	0,90	<0,010	12	0,023
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	<0,010	<0,010	6,3	<0,010
Isopropylbenzol	mg/kg	0,24	<0,010	0,49	<0,001
Propylbenzol	mg/kg	0,64	<0,010	2,1	<0,010
1,3,5-Trimethylbenzol	mg/kg	2,1	<0,010	5,5	<0,010
1,2,4-Trimethylbenzol	mg/kg	8,0	0,017	16	0,015
1,2,3-Trimethylbenzol	mg/kg	1,6	<0,010	4,2	<0,010
Indan	mg/kg	1,7	<0,010	2,3	<0,010
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	0,14	<0,010	0,21	<0,010
Naphthalin	mg/kg	0,36	<0,010	2,2	0,010
2-Methylnaphthalin	mg/kg	0,22	<0,010	1,1	<0,010
1-Methylnaphthalin	mg/kg	0,12	<0,010	0,52	<0,010
Summe BTEX	mg/kg	0,90	n. berechenbar	22	0,023

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
37266 - 5	S2-3/1			
37266 - 6	S2-3/2			
37266 - 7	S2-4/1			
37266 - 8	S2-4/2			
	37266 - 5	37266 - 6	37266 - 7	372

LAK	mg/kg	<1,0	<1,0	36	<1,0
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Toluol	mg/kg	<0,010	<0,010	0,23	0,011
Ethylbenzol	mg/kg	<0,010	<0,010	0,89	0,14
m/p-Xylol	mg/kg	<0,010	0,019	2,7	0,20
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	<0,010	<0,010	0,60	<0,010
Isopropylbenzol	mg/kg	<0,010	<0,010	0,23	0,013
Propylbenzol	mg/kg	<0,010	<0,010	1,2	0,027
1,3,5-Trimethylbenzol	mg/kg	<0,010	<0,010	3,4	0,091
1,2,4-Trimethylbenzol	mg/kg	<0,010	0,010	10	0,058
1,2,3-Trimethylbenzol	mg/kg	<0,010	<0,010	2,7	0,072
Indan	mg/kg	<0,010	<0,010	1,3	0,013
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	<0,010	<0,010	0,19	<0,010
Naphthalin	mg/kg	<0,010	<0,010	2,1	0,014
2-Methylnaphthalin	mg/kg	<0,010	<0,010	1,3	<0,010
1-Methylnaphthalin	mg/kg	<0,010	<0,010	0,46	<0,010
Summe BTEX	mg/kg	n. berechenbar	0,019	4,4	0,35

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37266 - 9	S2-5/1	
37266 - 10	S2-5/2	
37266 - 11	S2-6/1	
37266 - 12	S2-6/2	

37266 - 9	37266 - 10	37266 - 11	37266 - 12
2,200	0,200 10	0,200 11	0,200 12

mg/kg	27	<1,0	57	<1,0
ma/ka	<0.010	<0.010	<0.010	<0,010
				<0,010
	·	·	•	<0,010
	·	·	•	<0,010
	·	·	•	<0,010
				<0,010
		·	•	<0,010
0 0	·	·	•	<0,010
				<0,010
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	0,076	<0,010
mg/kg	<0,010	<0,010	6,3	0,020
mg/kg	<0,010	<0,010	15	0,054
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	0,29	<0,010
mg/kg	0,049	<0,010	0,71	<0,010
mg/kg	0,35	<0,010	3,2	0,010
mg/kg	0,36	<0,010	7,0	0,014
mg/kg	1,2	0,011	21	0,032
mg/kg	0,15	<0,010	5,4	0,010
mg/kg	<0,010	<0,010	2,8	<0,010
mg/kg	<0,010	<0,010	<0,010	<0,010
mg/kg	<0,010	<0,010	0,69	<0,010
mg/kg	<0,010	<0,010	3,8	0,012
mg/kg	0,031	<0,010	1,6	<0,010
ma/ka	0,084	<0,010	1.4	< 0,010
mg/kg	n. berechenbar	n. berechenbar	22	0,074
	mg/kg mg/kg	mg/kg	mg/kg <0,010	mg/kg <0,010 <0,010 <0,010 mg/kg <0,010

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37266 - 13	S2-7/1			
37266 - 14	S2-7/2			
37266 - 15	S2-8/1			
37266 - 16	S2-8/2			
	37266 - 13	37266 - 14	37266 - 15	37266

LAK	mg/kg	<1,0	<1,0	<1,0	<1,0
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010
Ethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
m/p-Xylol	mg/kg	0,012	<0,010	<0,010	<0,010
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010
Isopropylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Propylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,3,5-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,4-Trimethylbenzol	mg/kg	0,017	<0,010	<0,010	<0,010
1,2,3-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Indan	mg/kg	<0,010	<0,010	<0,010	<0,010
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	<0,010	<0,010	<0,010	<0,010
					0.040
Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
Naphthalin 2-Methylnaphthalin	mg/kg mg/kg	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010
•	0 0				

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37266 - 17	S2-9/1	
37266 - 18	S2-10/1	
37266 - 19	S2-10/2	
37266 - 20	S2-11/1	

37200 - 17 37200 - 18 37200 - 20	37266 - 17	37266 - 18	37266 - 19	37266 - 20
----------------------------------	------------	------------	------------	------------

LAK	mg/kg	<1,0	<1,0	<1,0	<1,0
LHKW+VC					
		0.010	0.010	0.010	-0.010
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010 <0,010
cis-1,2-Dichlorethen Trichlormethan	mg/kg	<0,010	<0,010 <0,010	<0,010 <0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	•	•	· ·
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen 1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010 <0,010
Tetrachlorethen	mg/kg mg/kg	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
	0 0				
AKW					
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010
Ethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
m/p-Xylol	mg/kg	<0,010	<0,010	0,012	<0,010
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010
Isopropylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Propylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,3,5-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,4-Trimethylbenzol	mg/kg	<0,010	<0,010	0,013	<0,010
1,2,3-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Indan	mg/kg	<0,010	<0,010	<0,010	<0,010
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	<0,010	<0,010	<0,010	<0,010
Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
2-Methylnaphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
1-Methylnaphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe BTEX	mg/kg	n. berechenbar	n. berechenbar	0,012	n. berechenbar

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
37266 - 21	S2-11/2			
37266 - 22	S2-12/1			
37266 - 23	S2-12/2			
37266 - 24	S2-13/1			
	37266 - 21	37266 - 22	37266 - 23	3726

LAK	mg/kg	<1,0	<1,0	<1,0	3,5
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0.010	<0.010	<0.010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0.010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0.010	<0.010	<0.010	<0.010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010
Ethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
m/p-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010
Isopropylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Propylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,3,5-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,4-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Indan	mg/kg	<0,010	<0,010	<0,010	<0,010
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	<0,010	<0,010	<0,010	<0,010
Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
2-Methylnaphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
1-Methylnaphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe BTEX	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37266 - 25	S2-13/2			
37266 - 26	S2-14/1			
37266 - 27	S2-14/2			
37266 - 28	S2-15/1			
	37266 - 25	37266 - 26	37266 - 27	37260

LAK	mg/kg	<1,0	23	<1,0	<1,0
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	mg/kg	<0,010	0,20	<0,010	<0,010
Toluol	mg/kg	<0,010	1,0	<0,010	<0,010
Ethylbenzol	mg/kg	<0,010	3,6	<0,010	<0,010
m/p-Xylol	mg/kg	<0,010	11	0,024	<0,010
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	<0,010	5,0	<0,010	<0,010
Isopropylbenzol	mg/kg	<0,010	0,36	<0,010	<0,010
Propylbenzol	mg/kg	<0,010	1,6	<0,010	<0,010
1,3,5-Trimethylbenzol	mg/kg	<0,010	4,5	<0,010	<0,010
1,2,4-Trimethylbenzol	mg/kg	<0,010	13	0,015	<0,010
1,2,3-Trimethylbenzol	mg/kg	<0,010	3,5	<0,010	<0,010
Indan	mg/kg	<0,010	1,8	<0,010	<0,010
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	<0,010	0,14	<0,010	<0,010
Naphthalin	mg/kg	<0,010	2,1	0,013	<0,010
2-Methylnaphthalin	mg/kg	<0,010	0,95	<0,010	<0,010
1-Methylnaphthalin	mg/kg	<0,010	0,32	<0,010	<0,010
Summe BTEX	mg/kg	n. berechenbar	21	0,024	n. berechenbar

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37266 - 29	S2-15/2			
37266 - 30	S2-16/1			
37266 - 31	S2-16/2			
37266 - 32	S2-17/1			
	37266 - 29	37266 - 30	37266 - 31	37266

	_				
LAK	mg/kg	<1,0	7,3	<1,0	<1,0
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010<	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	0,010	n. berechenbar
AKW					
AKW Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
	mg/kg mg/kg	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010
Benzol		•	·	•	•
Benzol Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010
Benzol Toluol Ethylbenzol	mg/kg mg/kg	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010	<0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol	mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010	<0,010 <0,010 <0,010	<0,010 <0,010 <0,010	<0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol	mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol	mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 0,011	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,3-Trimethylbenzol Indan	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,011 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,011 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010
Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin 2-Methylnaphthalin	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010

Labornummer	Ihre Probenbezeichnung		Probenentna	hme
37266 - 33	S2-17/2			
37266 - 34	S2-20/1			
37266 - 35	S2-1			
37266 - 36	S2-3			
	37266 - 33	37266 - 34	37266 - 35	3726

LAK	mg/kg	<1,0	<1,0
LHKW+VC			
1,1-Dichlorethan	mg/kg	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0.010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0.010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010
0 1111011			
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar
Summe LHKW AKW	mg/kg	n. berechenbar	n. berechenbar
	mg/kg mg/kg	n. berechenbar	n. berechenbar
AKW			
AKW Benzol	mg/kg	<0,010	<0,010
AKW Benzol Toluol	mg/kg mg/kg	<0,010 <0,010	<0,010 <0,010
AKW Benzol Toluol Ethylbenzol	mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010	<0,010 <0,010 0,011
AKW Benzol Toluol Ethylbenzol m/p-Xylol	mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol	mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010 <0,010 0,98
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010 0,010 1,7
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010 <0,010 1,7 1,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010 0,010 1,7 1,0 0,18
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010 0,988 1,7 1,0 0,18 <0,010
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010 0,98 1,7 1,0 0,18 <0,010 0,024
AKW Benzol Toluol Ethylbenzol m/p-Xylol Styrol o-Xylol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010	<0,010 <0,010 0,011 0,39 <0,010 <0,010 <0,010 <0,010 0,98 1,7 1,0 0,18 <0,010 0,024 0,22

Labornummer	Ihre Probenbezeichnung	Probenentnal	nme	
37266 - 33	S2-17/2	S2-17/2		
37266 - 34	S2-20/1	S2-20/1		
37266 - 35	S2-1			
37266 - 36	S2-3			
	37266 - 33	37266 - 34	37266 - 35	37266

Untersuchungen im Wasser

AKW Benzol µg/l 120 17 Toluol µg/l 20 57 Ethylbenzol µg/l 240 2300 m/p-Xylol µg/l 490 10000 o-Xylol µg/l 15 3600 Styrol µg/l 5,0 <5,0 Isopropylbenzol µg/l 88 120 Propylbenzol µg/l 340 1600 1,3,5-Trimethylbenzol µg/l 340 1600 1,2,4-Trimethylbenzol µg/l 1100 6000 1,2,3-Trimethylbenzol µg/l 280 1800 Indan µg/l 240 640 Inden µg/l 5,0 16 1,2,3,4-Tetralin µg/l 17 26 Naphthalin µg/l 110 720 2-Methylnaphthalin µg/l 10 10				
1,1-Dichlorethan µg/l <5,0 <5,0 1,1-Dichlorethen µg/l <5,0 <5,0 1,2-Dichlorethan µg/l <5,0 <5,0 1,2-Dichlorethan µg/l <5,0 <5,0 bichlorethan µg/l <5,0 <5,0 cis-1,2-Dichlorethen µg/l <5,0 <5,0 cis-1,2-Dichlorethen µg/l <0,50 <0,50 Trichlorethan µg/l <0,50 <0,50 Tetrachlormethan µg/l <0,50 <0,50 Tetrachlorethan µg/l <0,50 <0,50 Tetrachlorethan µg/l <0,50 <0,50 Tetrachlorethan µg/l <0,50 <0,50 Chlorbenzol µg/l <0,50 <0,50 Chlorbenzol µg/l <0,50 <0,50 Vinylchlorid µg/l <0,50 <0,50 Summe LHKW µg/l 20 57 Ethylbenzol µg/l 240 2300 m/p-Xylol <th>LAK</th> <th>μg/l</th> <th>1300</th> <th>2100</th>	LAK	μg/l	1300	2100
1,1-Dichlorethan µg/l <5,0	I HVW. VC			
1,1-Dichlorethen µg/l <5,0			5.0	5.0
1,2-Dichlorethan µg/l <5,0			·	· ·
Dichlormethan μg/l <5,0 <5,0 trans-1,2-Dichlorethen μg/l <5,0			·	
trans-1,2-Dichlorethen μg/l <5,0	•	· ·		
cis-1,2-Dichlorethen µg/l <5,0			•	· ·
Trichlormethan µg/l <0,50	•			
1,1,1-Trichlorethan μg/l		· ·		
Tetrachlormethan µg/l <0,50			·	· ·
Trichlorethen μg/l <0,50 <0,50 1,1,2-Trichlorethan μg/l <5,0		· ·		
1,1,2-Trichlorethan µg/l <5,0			· ·	· ·
Tetrachlorethen µg/l <0,50 <0,50 Chlorbenzol µg/l <5,0		μg/l		
Chlorbenzol µg/l <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 <0,50		μg/l		
1,1,1,2-Tetrachlorethan μg/l		μg/l	<0,50	•
Vinylchlorid μg/l <2,5 <2,5 Summe LHKW μg/l n. berechenbar n. berechenbar AKW Benzol μg/l 120 17 Toluol μg/l 20 57 Ethylbenzol μg/l 240 2300 m/p-Xylol μg/l 490 10000 o-Xylol μg/l 490 10000 Styrol μg/l 45,0 <5,0 Isopropylbenzol μg/l 88 120 Propylbenzol μg/l 340 1600 1,2,3-Trimethylbenzol μg/l 340 1600 1,2,3-Trimethylbenzol μg/l 1100 6000 1,2,3-Trimethylbenzol μg/l 280 1800 Indan μg/l 240 640 Inden μg/l 45,0 16 1,2,3,4-Tetralin μg/l 17 26 Naphthalin μg/l 110 720 2-Methylnaphthalin 24 <td>Chlorbenzol</td> <td>μg/l</td> <td><5,0</td> <td><5,0</td>	Chlorbenzol	μg/l	<5,0	<5,0
AKW μg/l n. berechenbar n. berechenbar Benzol μg/l 120 17 Toluol μg/l 20 57 Ethylbenzol μg/l 240 2300 m/p-Xylol μg/l 490 10000 o-Xylol μg/l 15 3600 Styrol μg/l <5,0		μg/l	<0,50	· ·
AKW Benzol µg/l 120 17 Toluol µg/l 20 57 Ethylbenzol µg/l 240 2300 m/p-Xylol µg/l 490 10000 o-Xylol µg/l 15 3600 Styrol µg/l 5,0 <5,0	Vinylchlorid	μg/l	<2,5	<2,5
Benzol μg/l 120 17 Toluol μg/l 20 57 Ethylbenzol μg/l 240 2300 m/p-Xylol μg/l 490 10000 o-Xylol μg/l 15 3600 Styrol μg/l 5,0 <5,0	Summe LHKW	μg/l	n. berechenbar	n. berechenbar
Toluol μg/l 20 57 Ethylbenzol μg/l 240 2300 m/p-Xylol μg/l 490 10000 o-Xylol μg/l 15 3600 Styrol μg/l 88 120 Propylbenzol μg/l 260 310 1,3,5-Trimethylbenzol μg/l 340 1600 1,2,4-Trimethylbenzol μg/l 1100 6000 1,2,3-Trimethylbenzol μg/l 240 640 Indan μg/l 240 640 Inden μg/l 5,0 16 1,2,3,4-Tetralin μg/l 17 26 Naphthalin μg/l 110 720 2-Methylnaphthalin μg/l 100 100	AKW			
Ethylbenzol µg/l 240 2300 m/p-Xylol µg/l 490 10000 o-Xylol µg/l 15 3600 Styrol µg/l <5,0	Benzol	μg/l	120	17
m/p-Xylol μg/l 490 10000 o-Xylol μg/l 15 3600 Styrol μg/l <5,0	Toluol	μg/l	20	57
ο-Xylol μg/l 15 3600 Styrol μg/l <5,0	Ethylbenzol	μg/l	240	2300
Styrol μg/l <5,0 <5,0 Isopropylbenzol μg/l 88 120 Propylbenzol μg/l 260 310 1,3,5-Trimethylbenzol μg/l 340 1600 1,2,4-Trimethylbenzol μg/l 1100 6000 1,2,3-Trimethylbenzol μg/l 280 1800 Indan μg/l 240 640 Inden μg/l <5,0	m/p-Xylol	μg/l	490	10000
Styrol μg/l <5,0 <5,0 Isopropylbenzol μg/l 88 120 Propylbenzol μg/l 260 310 1,3,5-Trimethylbenzol μg/l 340 1600 1,2,4-Trimethylbenzol μg/l 1100 6000 1,2,3-Trimethylbenzol μg/l 280 1800 Indan μg/l 240 640 Inden μg/l <5,0	o-Xylol	μg/l	15	3600
Propylbenzol μg/l 260 310 1,3,5-Trimethylbenzol μg/l 340 1600 1,2,4-Trimethylbenzol μg/l 1100 6000 1,2,3-Trimethylbenzol μg/l 280 1800 Indan μg/l 240 640 Inden μg/l <5,0	Styrol		<5,0	<5,0
1,3,5-Trimethylbenzol μg/l 340 1600 1,2,4-Trimethylbenzol μg/l 1100 6000 1,2,3-Trimethylbenzol μg/l 280 1800 Indan μg/l 240 640 Inden μg/l <5,0	Isopropylbenzol	μg/l	88	120
1,2,4-Trimethylbenzol μg/l 1100 6000 1,2,3-Trimethylbenzol μg/l 280 1800 Indan μg/l 240 640 Inden μg/l <5,0	Propylbenzol	μg/l	260	310
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· ·	340	1600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,4-Trimethylbenzol	• •	1100	6000
Indan μg/l 240 640 Inden μg/l <5,0	1,2,3-Trimethylbenzol	· ·	280	1800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			240	640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Inden		<5,0	16
Naphthalin $\mu g/l$ 110 720 2-Methylnaphthalin $\mu g/l$ 24 100	1,2,3,4-Tetralin	· ·	·	
2-Methylnaphthalin $\mu g/l$ 24 100			110	720
, ,	·			
	1-Methylnaphthalin	μg/l	17	

μg/l

Summe BTEX

890

16000

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37266 - 37	S2-5	
37266 - 38	S2-6	
37266 - 39	S2-8	
37266 - 40	S2-10	
	25266 25 25266 20	25266 20 25266

37266 - 37 37266 - 38 37266 - 39 37266 - 40

LAK	μg/l	1500	1300	100	66
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<2,5	<2,5	<2,5	<2,5
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
	. 0				
AKW	, 0				
		8,6	9,4	1,7	0,72
AKW	μg/l	8,6 54	9,4 54	1,7 8,8	0,72 0,82
AKW Benzol	μg/l μg/l	*	,	*	,
AKW Benzol Toluol	µg/I µg/I µg/I	54	54	8,8	0,82
AKW Benzol Toluol Ethylbenzol	μg/l μg/l	54 450	54 1300	8,8 110	0,82 11
AKW Benzol Toluol Ethylbenzol m/p-Xylol	µg/I µg/I µg/I µg/I	54 450 1300	54 1300 3700	8,8 110 380	0,82 11 94
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol	µg/l µg/l µg/l µg/l µg/l	54 450 1300 570	54 1300 3700 150	8,8 110 380 78	0,82 11 94 20
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol	µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0	54 1300 3700 150 <5,0	8,8 110 380 78 <5,0	0,82 11 94 20 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol	µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67	54 1300 3700 150 <5,0 68	8,8 110 380 78 <5,0 8,4	0,82 11 94 20 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol	µg/I µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67 200	54 1300 3700 150 <5,0 68 180	8,8 110 380 78 <5,0 8,4 20	0,82 11 94 20 <5,0 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	54 450 1300 570 <5,0 67 200 390	54 1300 3700 150 <5,0 68 180 340	8,8 110 380 78 <5,0 8,4 20	0,82 11 94 20 <5,0 <5,0 <5,0 38
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67 200 390 1200	54 1300 3700 150 <5,0 68 180 340 2000	8,8 110 380 78 <5,0 8,4 20 51	0,82 11 94 20 <5,0 <5,0 <5,0 38 80
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol 1,2,3-Trimethylbenzol	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67 200 390 1200 380	54 1300 3700 150 <5,0 68 180 340 2000 410	8,8 110 380 78 <5,0 8,4 20 51 220 65	0,82 11 94 20 <5,0 <5,0 <5,0 38 80 47
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67 200 390 1200 380 230	54 1300 3700 150 <5,0 68 180 340 2000 410 240	8,8 110 380 78 <5,0 8,4 20 51 220 65 41	0,82 11 94 20 <5,0 <5,0 <5,0 38 80 47
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67 200 390 1200 380 230 <5,0	54 1300 3700 150 <5,0 68 180 340 2000 410 240	8,8 110 380 78 <5,0 8,4 20 51 220 65 41 <5,0	0,82 11 94 20 <5,0 <5,0 <5,0 38 80 47 15 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67 200 390 1200 380 230 <5,0 17	54 1300 3700 150 <5,0 68 180 340 2000 410 240 15	8,8 110 380 78 <5,0 8,4 20 51 220 65 41 <5,0 <5,0	0,82 11 94 20 <5,0 <5,0 <5,0 38 80 47 15 <5,0 <5,0
AKW Benzol Toluol Ethylbenzol m/p-Xylol o-Xylol Styrol Isopropylbenzol Propylbenzol 1,3,5-Trimethylbenzol 1,2,4-Trimethylbenzol Indan Inden 1,2,3,4-Tetralin Naphthalin	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	54 450 1300 570 <5,0 67 200 390 1200 380 230 <5,0 17	54 1300 3700 150 <5,0 68 180 340 2000 410 240 15 33 160	8,8 110 380 78 <5,0 8,4 20 51 220 65 41 <5,0 <5,0 33	0,82 11 94 20 <5,0 <5,0 <5,0 38 80 47 15 <5,0 <5,0

Labornummer	Ihre Probenbezeichnung	Ihre Probenbezeichnung		
37266 - 41	S2-11			
37266 - 42	S2-13	S2-13		
37266 - 43	S2-14			
37266 - 44	S2-16			
	37266 - 41	37266 - 42	37266 - 43	37266

LAK	μg/l	60	220	1300	520
LHKW+VC					
1,1-Dichlorethan	ug/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
1,2-Dichlorethan	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
Dichlormethan	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
trans-1,2-Dichlorethen	μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
cis-1,2-Dichlorethen	μg/l μg/l	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0	<5,0 <5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<2,5	<2,5	<2,5	<2,5
Summe LHKW	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
Cammo Erneve	μ9/-	n. boroononbar	n. boroononda	ni boroononbar	ni boroononbar
AKW					
Benzol	μg/l	7,7	49	330	18
Toluol	μg/l	8,7	27	1300	47
Ethylbenzol	μg/l	35	130	2500	110
m/p-Xylol	μg/l	150	660	9700	310
o-Xylol	μg/l	38	35	3300	69
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	28	100	26
Propylbenzol	μg/l	8,3	75	280	67
1,3,5-Trimethylbenzol	μg/l	22	170	1100	76
1,2,4-Trimethylbenzol	μg/l	87	780	4300	310
1,2,3-Trimethylbenzol	μg/l	28	280	1200	130
Indan	μg/l	18	180	440	73
Inden	μg/l	<5,0	<5,0	20	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	21	24	<5,0
Naphthalin	μg/l	19	190	440	39
2-Methylnaphthalin	μg/l	<5,0	44	83	<5,0
1-Methylnaphthalin	μg/l	<5,0	35	38	<5,0
Summe BTEX	μg/l	240	900	17000	550

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37266 - 45	S2-17	

37266 - 45

LAK	μg/l	71
LHKW+VC		
1,1-Dichlorethan	μg/l	<5,0
1,1-Dichlorethen	μg/l	<5,0
1,2-Dichlorethan	μg/l	<5,0
Dichlormethan	μg/l	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0
Trichlormethan	μg/l	<0,50
1,1,1-Trichlorethan	μg/l	<0,50
Tetrachlormethan	μg/l	<0,50
Trichlorethen	μg/l	2,3
1,1,2-Trichlorethan	μg/l	<5,0
Tetrachlorethen	μg/l	<0,50
Chlorbenzol	μg/l	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50
Vinylchlorid	μg/l	<2,5
Summe LHKW	μg/l	2,3
AKW		
Benzol	μg/l	4,9
Toluol	μg/l	30
Ethylbenzol	μg/l	52
m/p-Xylol	μg/l	200
o-Xylol	μg/l	59
Styrol	μg/l	<5,0
Isopropylbenzol	μg/l	<5,0
Propylbenzol	μg/l	12
1,3,5-Trimethylbenzol	μg/l	28
1,2,4-Trimethylbenzol	μg/l	100
1,2,3-Trimethylbenzol	μg/l	32
Indan	μg/l	23
Inden	μg/l	<5,0
1,2,3,4-Tetralin	μg/l	<5,0
Naphthalin	μg/l	15
2-Methylnaphthalin	μg/l	<5,0
1-Methylnaphthalin	μg/l	<5,0
Summe BTEX	μg/l	350

Untersuchungsmethoden

Untersuchungen im Feststoff

LAK DIN ISO 22155

LHKW+VC DIN ISO 22155

AKW analog DIN 38407 F9-2

• Untersuchungen im Wasser

LAK analog DIN 38407 F9

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

Untersuchungsbericht

Untersuchungsstelle: **SEWA GmbH**

Laborbetriebsgesellschaft m.b.H

Kruppstr. 86 45145 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU42057 Berichtsdatum: 01.08.2012

Projekt: 014.060.010 / 5431.120; MG-REME, Sanierungsbereich 2

(S2)

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 27.07.2012

27.07.2012 Probeneingang:

Untersuchungszeitraum: 27.07.2012 - 01.08.2012

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 1 Wasserprobe

Andreas Görner Laborleitung

Andrews from

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung	Probenentnahme
42057 - 1	S2-23	

42057 - 1

LAK	μg/l	66
LHKW+VC		
1,1-Dichlorethan	μg/l	<5,0
1,1-Dichlorethen	μg/l	<5,0
1,2-Dichlorethan	μg/l	<5,0
Dichlormethan	μg/l	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0
Trichlormethan	μg/l	<0,50
1,1,1-Trichlorethan	μg/l	<0,50
Tetrachlormethan	μg/l	<0,50
Trichlorethen	μg/l	<0,50
1,1,2-Trichlorethan	μg/l	<5,0
Tetrachlorethen	μg/l	<0,50
Chlorbenzol	μg/l	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50
Vinylchlorid	μg/l	0,72
Summe LHKW	μg/l	0,72
AKW		
Benzol	μg/l	0,57
Toluol	μg/l	5,4
Ethylbenzol	μg/l	18
m/p-Xylol	μg/l	230
o-Xylol	μg/l	2,9
Styrol	μg/l	<5,0
Isopropylbenzol	μg/l	39
Propylbenzol	μg/l	130
1,3,5-Trimethylbenzol	μg/l	93
1,2,4-Trimethylbenzol	μg/l	420
1,2,3-Trimethylbenzol	μg/l	62
Indan	μg/l	83
Inden	μg/l	<5,0
1,2,3,4-Tetralin	μg/l	<5,0
Naphthalin	μg/l	27
2-Methylnaphthalin	μg/l	<5,0
1-Methylnaphthalin	μg/l	<5,0
Summe BTEX	μg/I	260

Untersuchungsmethoden

Untersuchungen im Wasser

LAK analog DIN 38407 F9

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

Probenah meprotokoll

Gemeinde Mönchengladbach

Projekt Reme Laborberichts-Nr. 47977

Analysenregister-Nr.	1	2	3	4
Datum	08.04.2014	08.04.2014	08.04.2014	08.04.2014
Uhrzeit	09:30	09:40	10:30	11:15
Pobennehmer	D.Gusek	D.Gusek	D.Gusek	D.Gusek
Pegel-Nr.	780168	780168	780169	780172
Pegeldurchmesser	100	100	100	100
Wasserstand vorher ROK [m]	3,82		4,26	4,27
Wasserstand nachher ROK [m]	4,03		4,34	4,39
Sohle ROK [m]	17,50		17,92	19,49
Entnahmetiefe [m]	5,80		6,30	6,30
Pumpleistung [l/min]	42	42	25	25
Art der Probenahme	Pumpprobe	Pumpprobe	Pumpprobe	Pumpprobe
Probenahmegerät	MP 1	MP 1	MP 1	MP 1
Abgepumpte Menge [L]	420	1260	320	400
Färbung	grau	schwach grau	ohne	ohne
Trübung	stark	schwach	schwach	schwach
Bodensatz	gering	ohne	ohne	ohne
Geruch	arom. stechend	arom. stechend	aromatisch	I. aromatisch
pH-Wert	6,23	6,74	6,66	7,03
Leitfähigkeit [μS/cm]	734	652	692	783
Sauerstoffgehalt [mg/l]	0,4	0,5	0,9	1,0
Redox-Spannung [mV]	151	163	191	215
Temperatur [°C]	12,7	12,4	12,2	12,3
Probenübergabe Labor				
Bemerkung	nach 10 min.	nach 30 min.		

Gemeinde Mönchengladbach

Projekt Reme Laborberichts-Nr. 47977

Analysenregister-Nr.	5	6	7	8
Datum	08.04.2014	08.04.2014	08.04.2014	08.04.2014
Uhrzeit	12:00	12:45		
Pobennehmer	D.Gusek	D.Gusek	D.Gusek	D.Gusek
Pegel-Nr.	780173	780056	780168	780169
Pegeldurchmesser	100	125		
Wasserstand vorher ROK [m]	4,25	3,60		
Wasserstand nachher ROK [m]	4,36	3,95		
Sohle ROK [m]	19,65	10,74		
Entnahmetiefe [m]	6,30	5,60		
Pumpleistung [I/min]	25	25		
Art der Probenahme	Pumpprobe	Pumpprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	MP 1	MP 1	VA-Schöpflot	VA-Schöpflot
Abgepumpte Menge [L]	400	270		
Färbung	ohne	schwach gelb	schwach grau	schwach grau
Trübung	schwach	ohne	mittel	stark
Bodensatz	ohne	ohne	ohne	gering
Geruch	I. aromatisch	faulig aromatisch	aromatisch stechen	schwach muffig
pH-Wert	7,03	7,10		
Leitfähigkeit [μS/cm]	727	626		
Sauerstoffgehalt [mg/l]	0,8	1,0		
Redox-Spannung [mV]	208	210		
Temperatur [°C]	12,7	12,3		
Probenübergabe Labor				
Bemerkung				

Gemeinde Mönchengladbach

Projekt Reme Laborberichts-Nr. 47977

Analysenregister-Nr.	9	10	11	
Datum	08.04.2014	08.04.2014	08.04.2014	
Uhrzeit				
Pobennehmer	D.Gusek	D.Gusek	D.Gusek	D.Gusek
Pegel-Nr.	780172	780173	780056	
Pegeldurchmesser				
Wasserstand vorher ROK [m]				
Wasserstand nachher ROK [m]				
Sohle ROK [m]				
Entnahmetiefe [m]				
Pumpleistung [l/min]				
Art der Probenahme	Schöpfprobe	Schöpfprobe	Schöpfprobe	Schöpfprobe
Probenahmegerät	VA-Schöpflot	VA-Schöpflot	VA-Schöpflot	VA-Schöpflot
Abgepumpte Menge [L]				
Färbung	schwach gelb	schwach gelb	gelb	
Trübung	stark	stark	stark	
Bodensatz	gering	gering	mittel	
Geruch	schwach muffig	ohne	faulig	
pH-Wert				
Leitfähigkeit [μS/cm]				
Sauerstoffgehalt [mg/l]				
Redox-Spannung [mV]				
Temperatur [°C]				
Probenübergabe Labor				
Bemerkung				

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU47977
Berichtsdatum: 17.04.2014

Projekt: 014.060.019 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 08.04.2014

Probeneingang: 08.04.2014

Untersuchungszeitraum: 08.04.2014 — 17.04.2014

Probenahme durch: SEWA GmbH

Untersuchungsgegenstand: 11 Wasserproben

Andreas Görner

Andrews ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
47977 - 1	780168,1	08.04.2014		
47977 - 2	780168,2	08.04.2014		
47977 - 3	780169	08.04.2014		
47977 - 4	780172	08.04.2014		
	47977 - 1	47977 - 2	47977 - 3	479

Chlorid	mg/l	4,0	6,3	8,0	7,4
Sulfat	mg/l	30	39	66	110
Nitrat	mg/l	0,27	0,22	0,61	0,36
Nitrit	mg/l	<0,050	0,084	<0,050	<0,050
Ammonium	mg/l	1,9	0,41	1,2	0,50
Sulfid	mg/l	<0,010	<0,010	<0,010	<0,010
LAK	μg/l	<50	56	<50	<50
KW-Index	mg/l	<0,10	<0,10	<0,10	<0,10
LHKW+VC					
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	3,0	2,3	2,1	1,8
Chlorbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50	<0,50
Summe LHKW	μg/l	3,0	2,3	2,1	1,8

					gesellschaft m
Labornummer	Ihre Pro	benbezeichnung		Probenentnahi	me
47977 - 1		780168,1		08.04.2014	
47977 - 2		780168,2		08.04.2014	
47977 - 3		780169		08.04.2014	
47977 - 4		780172		08.04.2014	
17577		47977 - 1	47977 - 2	47977 - 3	47977 - 4
		4/9// - 1	41911 - 2	41911 - 3	4/9// - 4
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenb
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,050	<0,050
Anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Fluoranthen	μg/l	<0,050	<0,050	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050	<0,050
· , · ·	· -	<0.050	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	µg/l		-,		
` '	μg/l μg/l	<0.050	<0,050	<0,050	<0.050
Benzo(k)fluoranthen	μg/l	<0,050 <0.050	•	•	<0,050 <0.050
Benzo(k)fluoranthen Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050	<0,050
Benzo(k)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen	μg/l μg/l μg/l	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050
Benzo(k)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen Benzo(ghi)perylen	hâ\I hâ\I hâ\I	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050	<0,050 <0,050 <0,050
Benzo(k)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen	hâ\l hâ\l hâ\l hâ\l	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
47977 - 5	780173	780173		
47977 - 6	780056	08.04.2014		
47977 - 7	780168 SP	08.04.2014		
47977 - 8	780169 SP	08.04.2014		
	47977 - 5	47977 - 6	47977 - 7	479

ma/l	13	11		
-				
•				
· ·	•	•		
•	•	•		
•	•			
•	•	•	51	<50
mg/i	<0,10	<0,10	0,31	0,26
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	1,6	1,4	1,2	<0,50
μg/l	<5,0	<5,0	<5,0	<5,0
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	<0,50	<0,50	<0,50	<0,50
μg/l	1,6	1,4	1,2	n. berechenbar
	hā\I hā\I hā\I hā\I hā\I hā\I hā\I hā\I	mg/l 96 mg/l 0,20 mg/l 0,20 mg/l 0,84 mg/l 0,010 µg/l <50 mg/l <0,10 µg/l <5,0 µg/l <5,0 µg/l <5,0 µg/l <55,0 µg/l <0,50	mg/l 96 63 mg/l 0,20 0,13 mg/l <0,050 <0,050 mg/l 0,84 1,7 mg/l <0,010 <0,010 μg/l <50 <50 mg/l <0,10	mg/l 96 63 mg/l 0,20 0,13 mg/l <0,050 <0,050 mg/l 0,84 1,7 mg/l <0,010 <0,010 μg/l <50 <50 51 mg/l <0,10 <0,10 0,31 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <5,0 <5,0 <5,0 μg/l <0,50 <5,0 <0,50 μg/l <0,50 <0,50 <0,50 νg/l <0,50 <0,50 <0,50

					gesellschaft
Labornummer	Ihre Pro	benbezeichnung		Probenentnahi	me
47977 - 5		780173		08.04.2014	
47977 - 6		780056		08.04.2014	
47977 - 7	7	780168 SP		08.04.2014	
47977 - 8		780169 SP		08.04.2014	
4/9// - 8	•				
		47977 - 5	47977 - 6	47977 - 7	47977 - 8
AKW					
Benzol	μg/l	<0,50	<0,50	<0,50	<0,50
Γoluol	μg/l	<0,50	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50	<0,50
n/p-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0	<5,0
sopropylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
I,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0	<5,0
ndan	μg/l	<5,0	<5,0	<5,0	<5,0
nden	μg/l	<5,0	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
I-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar	n. bereche
PAK nach US EPA					
Naphthalin	μg/l	<0,10	<0,10	<1,0	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<1,0	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<1,0	<0,10
Fluoren	μg/l	<0,10	<0,10	<1,0	<0,10
Phenanthren	μg/l	<0,050	<0,050	<0,50	0,05
Anthracen	μg/l	<0,050	<0,050	<0,50	<0,05
Fluoranthen	μg/l	<0,050	<0,050	<0,50	<0,050
Pyren	μg/l	<0,050	<0,050	<0,50	<0,050
Benzo(a)anthracen		<0,050	<0,050	<0,50	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,50 <0,50	<0,050
	μg/l				
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,50	<0,050
Benzo(k)fluoranthen	μg/l	<0,050 <0.050	<0,050	<0,50	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,50	<0,050
Oibanz/ab)anthrasan	μg/l	<0,050	<0,050	<0,50	<0,050
Dibenz(ah)anthracen		-0.050	-0.050	-0.50	.0.00
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,50	
		<0,050 <0,050 n. berechenbar	<0,050 <0,050 n. berechenbar	<0,50 <0,50 n. berechenbar	<0,050 <0,050 0,050

Labornummer	Ihre Probenbezeichnung	Probenentnahme
47977 - 9	780172 SP	08.04.2014
47977 - 10	780173 SP	08.04.2014
47977 - 11	780056 SP	08.04.2014

47977 - 9	47977 - 10	47977 - 11

LAK	μg/l	<50	<50	<50
KW-Index	mg/l	0,10	0,15	0,11
LHKW+VC				
1,1-Dichlorethan	μg/l	<5,0	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0	<5,0
Tetrachlorethen	μg/l	0,98	0,90	0,87
Chlorbenzol	μg/l	<5,0	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50	<0,50
Vinylchlorid	μg/l	<0,50	<0,50	<0,50
Summe LHKW	μg/l	0,98	0,90	0,87
AKW				
Benzol	μg/l	<0,50	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50	<0,50
m/p-Xylol	μg/l	<0,50	<0,50	<0,50
o-Xylol	μg/l	<0,50	<0,50	<0,50
Styrol	μg/l	<5,0	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0
1,2,3-Trimethylbenzol	μg/l	<5,0	<5,0	<5,0
Indan	μg/l	<5,0	<5,0	<5,0
Inden	μg/l	<5,0	<5,0	<5,0
1,2,3,4-Tetralin	μg/l	<5,0	<5,0	<5,0
Naphthalin	μg/l	<5,0	<5,0	<5,0
2-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0
1-Methylnaphthalin	μg/l	<5,0	<5,0	<5,0
Summe BTEX	μg/l	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
47977 - 9	780172 SP	08.04.2014
47977 - 10	780173 SP	08.04.2014
47977 - 11	780056 SP	08.04.2014

		47977 - 9	47977 - 10	47977 - 11
PAK nach US EPA				
	. 0	0.47	0.40	0.40
Naphthalin	μg/l	0,17	<0,10	<0,10
Acenaphthylen	μg/l	<0,10	<0,10	<0,10
Acenaphthen	μg/l	<0,10	<0,10	<0,10
Fluoren	μg/l	<0,10	<0,10	<0,10
Phenanthren	μg/l	0,61	0,056	<0,050
Anthracen	μg/l	0,13	<0,050	<0,050
Fluoranthen	μg/l	0,081	<0,050	<0,050
Pyren	μg/l	<0,050	<0,050	<0,050
Benzo(a)anthracen	μg/l	<0,050	<0,050	<0,050
Chrysen	μg/l	<0,050	<0,050	<0,050
Benzo(b)fluoranthen	μg/l	<0,050	<0,050	<0,050
Benzo(k)fluoranthen	μg/l	<0,050	<0,050	<0,050
Benzo(a)pyren	μg/l	<0,050	<0,050	<0,050
Dibenz(ah)anthracen	μg/l	<0,050	<0,050	<0,050
Benzo(ghi)perylen	μg/l	<0,050	<0,050	<0,050
Indeno(123-cd)pyren	μg/l	<0,050	<0,050	<0,050
Summe PAK n. US EPA	μg/l	0,99	0,056	n. berechenb
Summe PAK n.TrinkwV	μg/l	n. berechenbar	n. berechenbar	n. berechenb

Untersuchungsmethoden

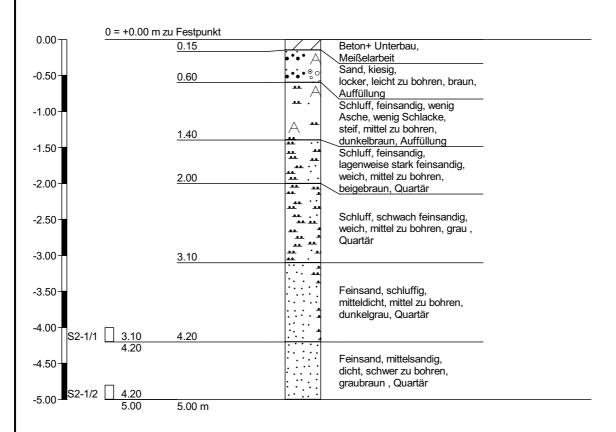
Untersuchungen im Wasser

DIN 38406 E5-1 Ammonium DIN EN ISO 10304-1 Chlorid KW-Index **DIN EN ISO 9377-2** LAK analog DIN 38407 F9 DIN EN ISO 10304-1 Nitrat DIN EN ISO 10304-1 Nitrit Sulfat DIN EN ISO 10304-1 DIN 38405 D26 Sulfid

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

PAK nach US EPA E DIN 38407 F39

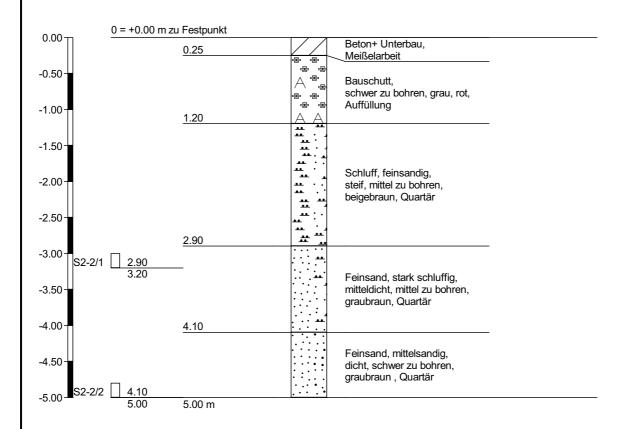


Anlage C 4

Bohrprofile und Schichtenverzeichnisse der Rammkernsondierungen

Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.02.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S2-1	Bearb.: von der Bruck				

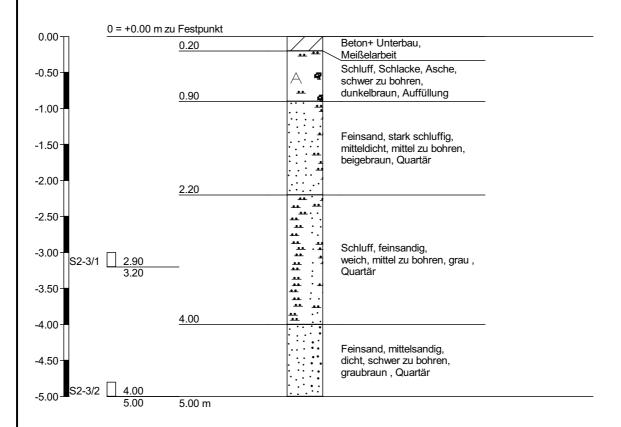
RKS S2-1



Höhenmaßstab 1:50

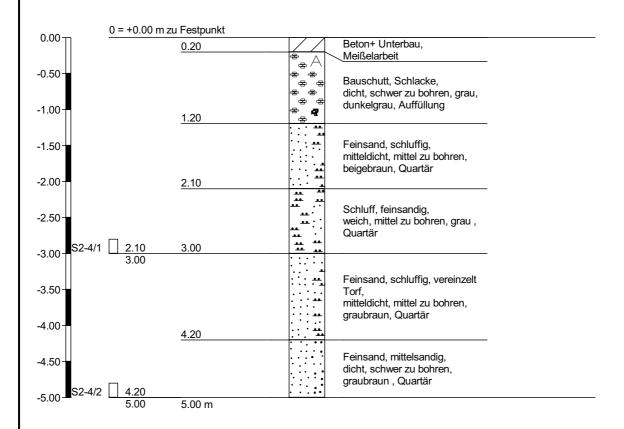
			Bericht						
		für B	ohrungen ohne durchgeher	nde Gewinnur	ng von geke	rnten Proben	Az.:		
Bauvorl	haben: H	allen Mönchenglad	bach						
Bohru	ung l	Nr RKS S2-1 /	Blatt 1				Datum: 15.02	2.2011	
1			2			3	4	5	6
		nennung der Boder d Beimengungen	nart	Bemerkungen	E	ntnom Probe			
Bis	b) Erg	jänzende Bemerku	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)
punkt		liche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				, Karto,
	a) Bet	on+ Unterbau, ißelarbeit		· · ·					
	b)			Direct-Push-Wass	e				
0.15	c)		d) Meißelarbeit	e)		rprobe entnommen (2HS)	1		
	f)		g)	h)	i)	-			
		nd, kiesig, ker, leicht zu bohre	en, braun, Auffüllung						
	b)								
0.60	c) loc	ker	d) leicht zu bohren	e) braun		trocken			
	f)		g) Auffüllung	h)	i)				
			enig Asche, wenig Schlack , dunkelbraun, Auffüllung						
1.40	b)			erdfeucht					
1.40	c) ste	if	d) mittel zu bohren	e) dunke	erdiedchi				
	f)		g) Auffüllung	h)	i)				
	lag	nluff, feinsandig, enweise stark feins artär	sandig, weich, mittel zu boh	nren, beigebra	aun,	_			
2.00	I h)	enweise stark feins	sandig			andfaalak			
2.00	c) we	ch	d) mittel zu bohren	e) beigeb	oraun	erdfeucht			
	f)		g) Quartär	h)	i)				
	a) Scl we	nluff, schwach fein ich, mittel zu bohre	sandig, en, grau , Quartär						
	b)								
3.10	c) we	ich	d) mittel zu bohren	e) grau		feucht			
	f)		g) Quartär	h)	i)				
¹) Eir	ntragung	nimmt der wissens	chaftliche Bearbeiter vor.				,		

			Bericht:						
		für B	ohrungen ohne durchgehen	ide Gewinnur	ng von geke	rnten Proben	Az.:		
Bauvorl	haben: Ha	llen Mönchenglad	bach				Datum:		
Bohru	ung N	r RKS S2-1 /I	Blatt 2					2.2011	
1			2			3	4	5	6
Die	a) Bendund	ennung der Boden Beimengungen	nart		Bemerkungen	E	ntnom Probe		
Bis m	b) Ergä	inzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr.	in m (Unter
punkt	f) Üblid Bend	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Sonstiges			kante
	a) Fein	sand, schluffig, eldicht, mittel zu b	ohren, dunkelgrau, Quartä	r			С	S2- 1/1	4.20
	b)	,		nass					
4.20	c) mitte	eldicht	d) mittel zu bohren	e) dunke	lgrau	bis 3,7 m Benzingeruch			
	f)		g) Quartär	h)	i)				
		sand, mittelsandiç t, schwer zu bohr	⊥ g, en, graubraun , Quartär				С	S2- 1/2	5.00
	b)								
5.00	c) dich	t	d) schwer zu bohren	e) graubi	raun	nass			
	f)		g) Quartär	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)					1			
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
¹) Eir	ntragung n	immt der wissensc	chaftliche Bearbeiter vor.						


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.02.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S2-2	Bearb.: von der Bruck				

Höhenmaßstab 1:50

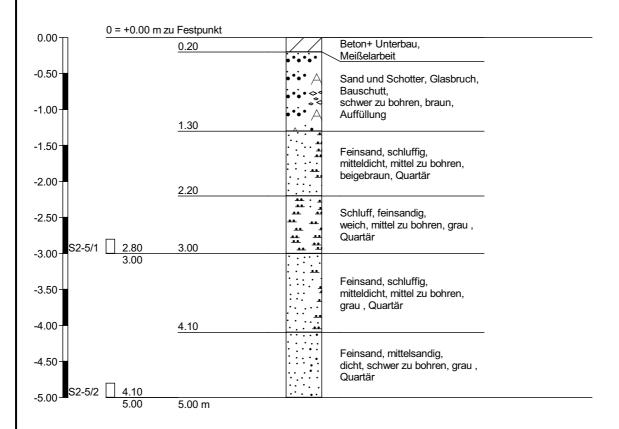
			Bericht:							
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geke	nten Proben	Az.:			
Bauvorh	naben: Ha	llen Mönchengladl	oach							
Bohru	ıng N	r RKS S2-2 /E	Blatt 1				Datum: 15.0	2.2011		
1			2			3	4	5	6	
		ennung der Boden Beimengungen	art	Bemerkungen	Entnommene Proben					
Bis		inzende Bemerkur	ngen ¹)			Sonderprobe			Tiefe	
m unter	c) Beso	chaffenheit	d) Beschaffenheit	e) Farbe		Wasserführung Bohrwerkzeuge		Nr.	in m	
Ansatz- punkt	nach f) Üblid	Bohrgut	Sonsides						(Unter- kante)	
		ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt					
		n+ Unterbau, Selarbeit								
	b)									
0.25	c)		d) Meißelarbeit	e)		-				
	f)		g)	h)	i)					
	a) Baus schv	schutt, ver zu bohren, gra								
	b)									
1.20	c)		d) schwer zu bohren	e) grau, ı	ot .	trocken				
	f)		g) Auffüllung	h)	i)					
		uff, feinsandig, , mittel zu bohren,	beigebraun, Quartär							
2.90	b)			erdfeucht						
2.50	c) steif		d) mittel zu bohren	e) beigeb	oraun	Graidacht				
	f)		g) Quartär	h)	i)					
	a) Fein mitte	sand, stark schlut eldicht, mittel zu b	ffig, ohren, graubraun, Quartär				С	S2- 2/1	3.20	
4.10	b)					nass bis 3,2 m Benzingeruch und	ı			
		eldicht	d) mittel zu bohren	e) graubr		schwarze Verfärbung				
	f)		g) Quartär	h)	i)					
	a) Fein dich	sand, mittelsandiç t, schwer zu bohr	g, en, graubraun , Quartär				С	S2- 2/2	5.00	
	b)									
5.00	c) dich	t	d) schwer zu bohren	e) graubr	aun	nass				
	f)		g) Quartär	h)	i)					
¹) Ein	itragung n	immt der wissensc	haftliche Bearbeiter vor.							


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.02.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S2-3	Bearb.: von der Bruck				

Höhenmaßstab 1:50

			Ochichter		Bericht:				
		für B	ohrungen ohne durchgehen	de Gewinnur	ng von gekei	nten Proben	Az.:		
Bauvorl	haben: H	allen Mönchenglad	bach						
Bohru	ung N	Nr RKS S2-3 /	Blatt 1				Datum: 15.02	2.2011	
1			2			3	4	5	6
		ennung der Boder Beimengungen	nart	Bemerkungen	E	ntnomr Probe			
Bis	b) Erg	änzende Bemerkui	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		chaffenheit h Bohrgut	d) Beschaffenheit nach Bohrvorgang	Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)		
punkt		iche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Conougos			ranco
		on+ Unterbau, ßelarbeit							
	b)			Direct-Push-Wass	ie				
0.20	c)		d) Meißelarbeit	e)		rprobe entnommer (2HS)	ו		
	f)		g)	h)	i)				
		nluff, Schlacke, As wer zu bohren, du	che, nkelbraun, Auffüllung						
	b)					andfarrabt			
0.90	c)		d) schwer zu bohren	e) dunke	lbraun	erdfeucht			
	f)		g) Auffüllung	h)	i)				
		nsand, stark schlu eldicht, mittel zu b	ffig, ohren, beigebraun, Quartäl						
2.20	b)			erdfeucht					
2.20	c) mit	eldicht	d) mittel zu bohren	e) beigeb	oraun	erdiedent			
	f)		g) Quartär	h)	i)				
	a) Sch wei	nluff, feinsandig, ch, mittel zu bohre	en, grau , Quartär			ordfought ch 2.0	С	S2- 3/1	3.20
4.00	b)					erdfeucht, ab 2,8 Klopfnässe 2,9 bis 3,2			
7.00	c) wei	ch	d) mittel zu bohren	e) grau		dunkelgrau und leichter Benzingeruch			
	f)		g) Quartär	h)	i)	gs. aon			
	a) Fei dicl	nsand, mittelsandi nt, schwer zu bohr	g, en, graubraun , Quartär				С	S2- 3/2	5.00
5.00	b)					ngee			
3.00	c) dicl	nt	d) schwer zu bohren	e) graubr	aun	nass			
	f)		g) Quartär	h)	i)				
¹) Eir	ntragung	nimmt der wissenso	chaftliche Bearbeiter vor.						

Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.02.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S2-4	Bearb.: von der Bruck				

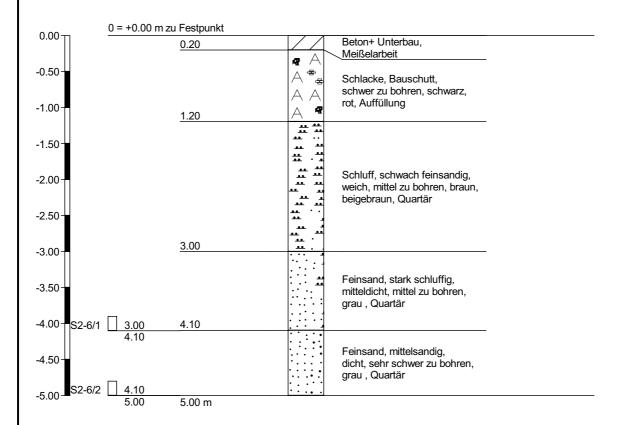

Höhenmaßstab 1:50

				Bericht:									
			für Bo	hru	ngen ohne durchgehend	de G	ewinnun	g von geker	nten Proben	Az.:			
Bauvorh	naben	: Halle	n Mönchengladt	ach									
Bohru	ıng	Nr	RKS S2-4 /E	Blatt	1					D	atum: 15.02	2.2011	
1					2				3		4	5	6
			nung der Boden	art					Eı	ntnomi			
Bis			eimengungen zende Bemerkur	aon	1)				Bemerkungen Sonderprobe			Probe	en
m	0) 1	Liyaii	zende bemerkur	igen)					Wasserführung				Tiefe
unter Ansatz-			affenheit 3ohrgut	d)	Beschaffenheit nach Bohrvorgang				Bohrwerkzeuge Kernverlust		Art	Nr.	in m (Unter-
punkt		Üblich		g)		h)	1)	i) Kalk-	Sonstiges				kante)
		Benen			Benennung		Gruppe	gehalt					
			+ Unterbau, larbeit										
	b)												
0.20	c)			d)		e)							
					Meißelarbeit								
	f)			g)		h)		i)					
	а) լ	Bausc	chutt, Schlacke,										
		dicht,	schwer zu bohre										
1.20 -	b)												
	c) (dicht		d)	schwer zu bohren	e)	arau d	unkelgrau	trocken				
	f)	aiorit		a)		h)	grad, o	i)					
	')			g)	Auffüllung	'''		')					
			and, schluffig, dicht, mittel zu be										
	b)												
2.10				erdfeucht									
	с) і	mittelo	dicht	d)	mittel zu bohren	e)	beigeb	raun					
	f)			g)	Quartär	h)		i)					
	,				Quartar							00	0.00
	a) ;	Schluf weich,	ff, feinsandig, , mittel zu bohre	n, gr	au , Quartär						С	S2- 4/1	3.00
	b)								erdfeucht, lagenweise				
3.00	- \			-1\					Klopfnässe lagenweise				
	c) \	weich		d)	mittel zu bohren	e)	grau		dunkelgrau und Benzingeruch				
	f)			g)	Quartär	h)		i)	- Derizingeruch				
	a)	Feinsa mittelo	and, schluffig, ve dicht. mittel zu be	rein ohre	zelt Torf, n, graubraun, Quartär								
	b)		,		, <u>g</u> , g								
4.20	C)			۷,		٥)			nass				
	c) ı	mittelo	dicht	d)	mittel zu bohren	e)	graubr	aun					
	f)			g)	Quartär	h)		i)					
1) Fin	tragui	aa nim	omt dar wissansa	haftl	iche Bearbeiter vor.				I.		<u> </u>		<u>I</u>

Anlage Bericht

	6611161116111611116											Bericht:			
			für Bo	hru	ngen ohne durchgehen	de G	ewinnun	ig von geker	nten Proben	Az.:					
Bauvorh	naben	: Hall	en Mönchengladt	ach	1										
Bohru	ıng	Nr	RKS S2-4 /E	Blatt	2					D	atum: 15.02	2.2011			
1					2				3		4	5	6		
	a)	Bene	nnung der Boden Beimengungen	Bemerkungen		Er	ntnomr Probe								
Bis			nzende Bemerkun	gen	1)				Sonderprobe			1 1000	211		
m	į.				·	Ι,			Wasserführung Bohrwerkzeuge				Tiefe in m		
unter Ansatz-			haffenheit Bohrgut	d)	d) Beschaffenheit nach Bohrvorgang		e) Farbe		Kernverlust Sonstiges		Art	Nr.	(Unter-		
punkt		Üblicl		g)	Geologische 1)	h)	1) Gruppe	i) Kalk-	Solistiges				kante)		
	1		nnung and, mittelsandig	l.	Benennung		Gruppe	gehalt			С	S2-	5.00		
		dicht,	schwer zu bohre	en, g	graubraun , Quartär							4/2			
	b)														
5.00	c) dicht d) schwer zu bohren e) graubraun								nass						
	f)	f) g) Quartär h) i)													
	a)														
	b)														
	(c) (d) (e)														
	f)			g)		h)		i)							
	a)														
	b)														
	c)			d)		e)									
	f)			g)		h)		i)							
	a)														
	b)														
	c)			d)		e)									
	f)			g)		h)		i)							
	a)														
	b)														
	c)			d)		e)									
	f)			g)		h)		i)							
1) Fin	tradu	na nir	mmt der wissensc	haft	liche Bearbeiter vor.										

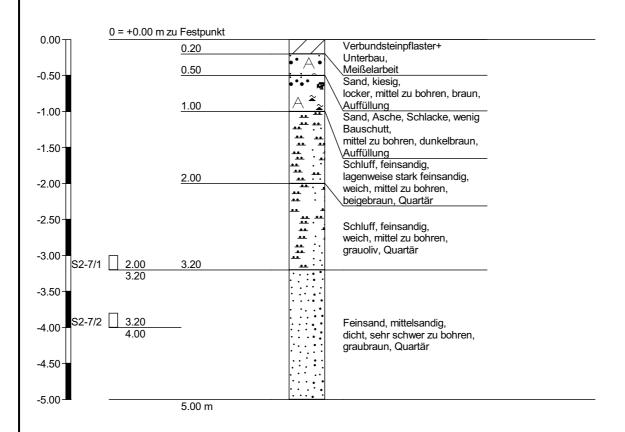
Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 15.02.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S2-5	Bearb.: von der Bruck				



Höhenmaßstab 1:50

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben											Bericht:			
			tur Bo	onru	ngen onne aurcngenen	ae G	ewinnun	ig von geker	nten Proben	Az	. .:				
Bauvorh	nabei	n: Hall	len Mönchengladt	ach											
Bohru	ıng	Nı	r RKS S2-5 /E	Blatt	1					Datum: 15.02.2011					
1					2				3		4	5	6		
	a)		ennung der Boden Beimengungen	art					Bemerkungen		Eı	ntnomi Probe			
Bis	b)		nzende Bemerkur	gen	1)				Sonderprobe			1 1000) ii		
m unter Ansatz-	c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e) Farbe			Wasserführung Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	Tiefe in m (Unter- kante)		
punkt	f)	Üblic Bene	he ennung	g)	Geologische ¹) Benennung		1) Gruppe	i) Kalk- gehalt	Solistiges				Karile)		
	a)		n+ Unterbau, elarbeit												
	b)		<u> </u>						Direct-Push-Wass	se					
0.20	c)			d)	Meißelarbeit	e)			rprobr entnommer (2HS)						
	f)			g)		h)		i)							
	a)		I und Schotter, G												
1.30	b)														
	c)			d)	schwer zu bohren	e)	braun		erdfeucht						
	f)			g)	Auffüllung	h)		i)							
	a)		sand, schluffig, ldicht, mittel zu b												
	b)		15 14												
2.20	c)	mitte	ldicht	d)	d) mittel zu bohren e) beigebraun				erdfeucht						
	f)			g)	Quartär	h)		i)							
	a)	Schlu weich	uff, feinsandig, n, mittel zu bohre	n, gr	au , Quartär						С	S2- 5/1	3.00		
2.00	b)								feucht, lagenweise Klopfnässe	9					
3.00	c)	weich	า	d)	mittel zu bohren	e)	grau		ab 2,8 m dunkelgrau und Benzingeruch						
	f)			g)	Quartär	h)		i)							
	a)	Feins mitte	sand, schluffig, ldicht, mittel zu b	ohre	n, grau , Quartär										
4 40	b)														
4.10	c)	mitte	ldicht	d)	mittel zu bohren	e)	grau		nass						
	f)			g)	Quartär	h)		i)							
1) Fin	ntragi	ına niı	mmt der wiesensc	haftl	iche Bearbeiter vor.										

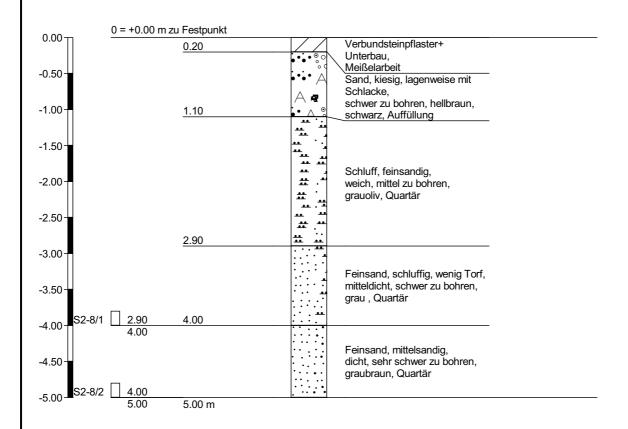
					Ochlichter					Bericht:				
	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.:													
Bauvorh	Bauvorhaben: Hallen Mönchengladbach													
Bohru	ıng	Nı	RKS S2-5	/Blatt	2					D	atum: 15.02	2.2011		
1					2				3		4	5	6	
	a)	Bene und E	nnung der Bode Beimengungen	nart					Bemerkungen		Eı	ntnommene Proben		
Bis	b)		nzende Bemerkı	ingen	ı ¹)				Sonderprobe					
m unter	c)	Besc	haffenheit	(h	Beschaffenheit	e)	Farbe		Wasserführung Bohrwerkzeuge		Art	Nr.	Tiefe in m	
Ansatz- punkt	Ĺ	nach	Bohrgut		nach Bohrvorgang	<u> </u>			Kernverlust Sonstiges		7 4 4		(Unter- kante)	
pariik	f) Übliche g) Geologische 1) h) 1) i) Kalk- Benennung Benennung Gruppe gehal													
	a)	Feins	sand, mittelsand , schwer zu boh	ig,				С	S2- 5/2	5.00				
	b)	dioni	, SCHWCI Zu BOH	i Ci i, ţ										
5.00	L.			T		e)			nass					
	(c)	dicht		(d)										
	f)			g)	i)									
	a)													
	b)													
	c)			d)		(e)								
	f)					h)		i)						
				g)		'''		')						
	(a)													
	b)													
	c)			d)		e)								
	f)			g)		h)	l	i)						
	a)							I						
	b)													
	c)			d)		e)	ı							
	f) g) h) i)							i)						
	a)													
	b)													
	c)													
	f)			g)		h)	l	i)						
¹) Ein	trad	ına nii	mmt der wissens	chaft	liche Bearbeiter vor.			1					1	


Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 15.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-6	Bearb.: von der Bruck

Höhenmaßstab 1:50

				Bericht:								
			für Bo	ohrungen ohne durch	ngehende G	Sewinnur	ıg von geker	nten Proben	Az.:			
Bauvorh	habe	n: Hal	len Mönchengladt	oach				•				
Bohru	ıng	N	r RKS S2-6 /E	Blatt 1					Datum: 15.02	2.2011		
1				2				3	4	5	6	
	a)		ennung der Boden Beimengungen	art				Bemerkungen	E		ntnommene Proben	
Bis	b)		nzende Bemerkun	igen ¹)				Sonderprobe				
m unter	C)	Resc	:haffenheit	d) Beschaffenheit e) Farbe				Wasserführung Bohrwerkzeuge	Art	Nr.	Tiefe in m	
Ansatz- punkt		nach	Bohrgut	nach Bohrvorgang				Kernverlust Sonstiges	740	'''	(Unter- kante)	
pariite	f)		che ennung	g) Geologische ¹) Benennung								
	a)		n+ Unterbau, selarbeit									
	b)							Direct-Push-Wass	e			
0.20	c)			d) Meißelarbeit		rprobr entnommen (2HS9						
	f)			g)	i)							
	a)		acke, Bauschutt, ver zu bohren, sch									
	b)				-							
1.20	c)			d)	e)			erdfeucht				
				schwer zu boh	ren ()	schwa	rz, rot					
	f)			g) Auffüllung	h)		i)					
	a)		uff, schwach feins h, mittel zu bohre	sandig, n, braun, beigebraur								
	b)				feucht, lagenweise							
3.00	c)	weicl	h	d) mittel zu bohren e) braun, beigebraun				Klopfnässe				
	f)			g) Quartär	h)	ı	i)					
	a)	Feins mitte	sand, stark schluf eldicht, mittel zu be	fig, ohren, grau , Quartä	ir				С	S2- 6/1	4.10	
	b)							nass				
4.10	c)	mitte	eldicht	d) mittel zu bohre	en e)	grau		Benzingeruch				
	f)			g) Quartär	h)	l	i)					
	a)	Feins dicht	sand, mittelsandig , sehr schwer zu	l, bohren, grau , Quar	tär				С	S2- 6/2	5.00	
	b)											
5.00	c)	dicht		d) sehr schwer zu bohren	u e)	grau		nass				
	f)			g) Quartär	h)	1	i)					
¹) Ein	ntraqı	una ni	mmt der wissensc	haftliche Bearbeiter v	vor.			1	<u> </u>			

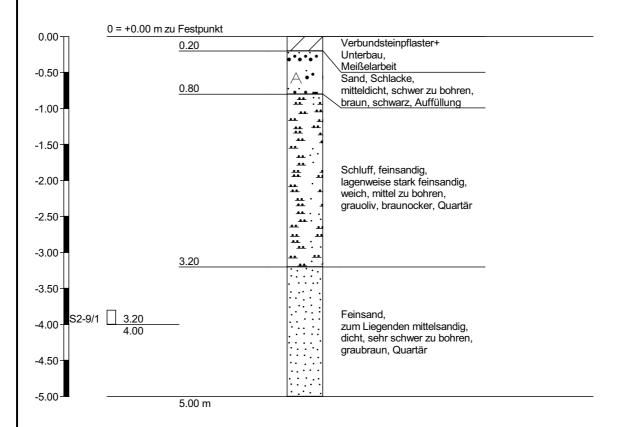
Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 15.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-7	Bearb.: von der Bruck



Höhenmaßstab 1:50

			für Da	enton Drobon	В	ericht:							
			Tur Bo	onrun	igen ohne durchgehend	ie Ge	winnun	g von geker	nten Proben	Az	z.:		
Bauvorh	nabe	n: Hal	len Mönchengladb	oach						Ь.			
Bohru	ıng	Ν	r RKS S2-7 /E	Blatt	1					Di	atum: 15.02	2.2011	
1					2				3		4	5	6
	a)	Bene und I	ennung der Bodena Beimengungen	art					Bemerkungen		Er	nene en	
Bis	b)	Ergä	nzende Bemerkun	igen	1)	Sonderprobe Wasserführung				Tiefe			
unter Ansatz-	c)		haffenheit Bohrgut		d) Beschaffenheit e) Farbe nach Bohrvorgang				Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter- kante)
punkt	f)	Üblic Bene	he ennung	g)	Geologische 1) h) 1) i) Kalk- Benennung Gruppe gehalt				Conougoo				nanc)
	a)	Verb	undsteinpflaster+ elarbeit	Unte				<u> </u>					
	b)								Direct-Push-Wass	se			
0.20	c)			d) Meißelarbeit					rprobr entnommer (2HS)				
	f) g) h) i)												
	a) Sand, kiesig, locker, mittel zu bohren, braun, Auffüllung												
	b)												
0.50	c)	locke	er	d)	mittel zu bohren	e)	braun		erdfeucht				
	f)	g) Auffüllung h) i)											
	a)		l, Asche, Schlack I zu bohren, dunk										
1.00	b)			erdfeucht									
1.00	c)			d) mittel zu bohren e) dunkelbraun				erdieucht					
	f)			g)	Auffüllung	h)		i)					
		Schli lager Quar		andiç	g, weich, mittel zu bohi	ren, b	eigebra	iun,					
2.00	b)	lager	nweise stark feins	andiç	9				erdfeucht				
2.00	c)	weicl	h	d)	mittel zu bohren	e)	beigebı	raun	erdieucht				
	f)			g)	Quartär	h)		i)					
	a)	Schli weicl	uff, feinsandig, h, mittel zu bohrer	n, gra	auoliv, Quartär						С	S2- 7/1	3.20
3.20	b)								feucht zum Liegenden				
0.20	c)	weicl	h	d)) mittel zu bohren e) grauoliv		Klopfnässe						
	f)			g)	Quartär	h)		i)					
1\	4		mmt dar wiesansc	ا- حدرا: -	. L. D L Y								

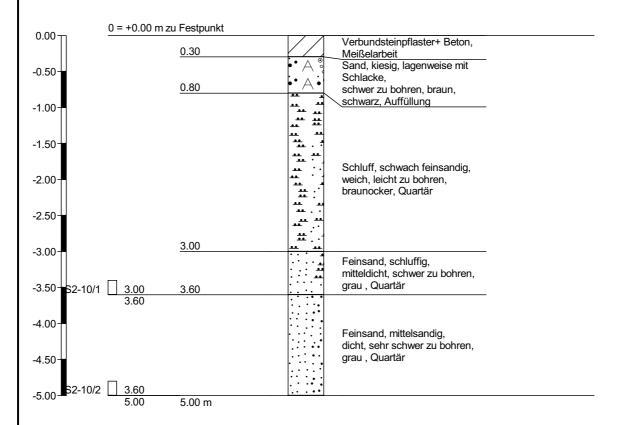
												Bericht:				
	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben															
Bauvorh	Bauvorhaben: Hallen Mönchengladbach															
Bohru	ıng	Nı	RKS S2-7 /E	Blatt	2					D	atum: 15.02	2.2011				
1					2				3	4 5			6			
	a)	Bene	nnung der Boden Beimengungen	art					Bemerkungen	Entnon						
Bis	b)		nzende Bemerkun	gen	1)				Sonderprobe			Probe	211			
m	Ĺ				·	Ι,			Wasserführung Bohrwerkzeuge				Tiefe in m			
unter Ansatz-	(c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	(e)	Farbe		Kernverlust Sonstiges		Art	Nr.	(Unter-			
punkt	f)) Übliche Benennung			Geologische ¹) Benennung	h)	1) Gruppe	i) Kalk- gehalt					kante)			
	a)	Feins	sand, mittelsandig	ļ,			Огиррс	goriait			С	S2-	4.00			
		dicht	, sehr schwer zu				7/2									
	b)															
5.00	c) dicht d) sehr schwer zu e) graubraun nass															
	f)															
	a)															
	b)								_							
	c)			d)		e)										
	f)			g)		h)		i)								
	a)															
	b)															
	c)			d)		e)			-							
	f)			g)		h)		i)								
	a)							I								
	b)															
	c)			d)		e)										
	f) g) h) i)							i)	-							
	a)															
	b)								-							
	c)	-														
	f)			g)		h)		i)								
1) Fin	tradi	ına ni	mmt dar wissansa	haft	liche Bearbeiter vor.				ı				I			


Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 15.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-8	Bearb.: von der Bruck

Höhenmaßstab 1:50

				Bericht:					
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geke	nten Proben	Az.:		
Bauvort	naben: H	allen Mönchengladt	oach						
Bohru	ıng l	Nr RKS S2-8 /E	Blatt 1				Datum: 15.0	2.2011	
1			2			3	4	5	6
	a) Be un	nennung der Boden d Beimengungen	art			Bemerkungen	E	mene en	
Bis	b) Erç	gänzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz- punkt	na	schaffenheit ch Bohrgut	d) Beschaffenheit e) Farbe Bohrwerk: Kernver Sonstie				Art	Nr.	in m (Unter- kante)
Puliki	,	liche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				,
		rbundsteinpflaster+ eißelarbeit	Unterbau,		-				
	b)			Direct-Push-Wass					
0.20	c)		d) Meißelarbeit	e)		rprobr entnommer (2HS)	1		
	f)		g)	i)					
		nd, kiesig, lagenwe nwer zu bohren, hel	1						
	b)		·	-					
1.10	c)		d) schwer zu bohren	e) hellbra		erdfeucht			
	f)		g) Auffüllung	h)	i)				
	a) Sc we	hluff, feinsandig, ich, mittel zu bohre	n, grauoliv, Quartär						
0.00	b)			formely to					
2.90	c) we	ich	d) mittel zu bohren	e) grauol	iv	feucht			
	f)		g) Quartär	h)	i)				
		insand, schluffig, w teldicht, schwer zu	enig Torf, bohren, grau , Quartär				С	S2- 8/1	4.00
4.00	b)					2000			
4.00	c) mit	teldicht	d) schwer zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
	a) Fe	insand, mittelsandiç ht, sehr schwer zu	j, bohren, graubraun, Quartä	ir			С	S2- 8/2	5.00
E 00	b)								
5.00	c) dic	ht	d) sehr schwer zu bohren	e) graubr	aun	nass			
	f)		g) Quartär	h)	i)				
¹) Ein	ntragung	nimmt der wissensc	haftliche Bearbeiter vor.						

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 15.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-9	Bearb.: von der Bruck

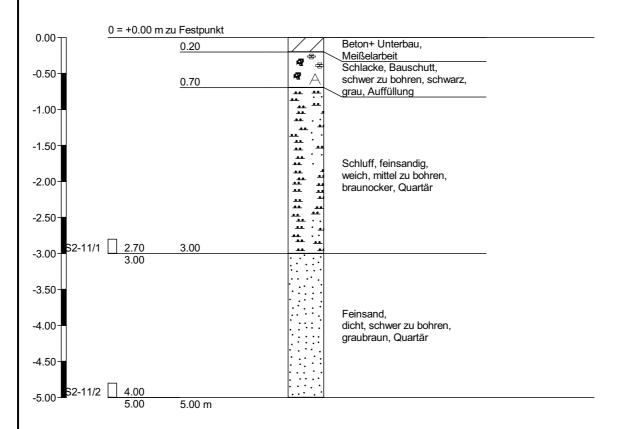


Höhenmaßstab 1:50

				Bericht:							
		für B	ohrungen ohne durchgeher	nde Gewinnur	ng von gekei	nten Proben	Az.:				
Bauvorl	naben: H	allen Mönchenglad	bach								
Bohru	ıng İ	Nr RKS S2-9 /I	Blatt 1				Datum: 15.02	2.2011			
1			2			3	4	5	6		
		nennung der Boden d Beimengungen	nart	Bemerkungen	E		ntnommene Proben				
Bis	b) Erg	jänzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe		
unter Ansatz-		schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)			
punkt		iche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Conougoo			11011107		
		bundsteinpflaster+ ißelarbeit	- Unterbau,								
	b)										
0.20	c)		d) Meißelarbeit								
	f)										
	a) Sand, Schlacke, mitteldicht, schwer zu bohren, braun, schwarz, Auffüllung										
0.00	b)										
0.80	c) mit	teldicht	d) schwer zu bohren	e) braun,	schwarz	erdfeucht					
	f)		g) Auffüllung	h)	i)						
	lag	nluff, feinsandig, enweise stark feins unocker, Quartär	sandig, weich, mittel zu boł								
0.00	I h)	enweise stark feins	sandig	former to							
3.20	c) we	ch	d) mittel zu bohren	e) grauol braund		feucht					
	f)		g) Quartär	h)	i)						
	00		sandig, dicht, sehr schwer	zu bohren, g	raubraun,	-	С	S2- 9/1	4.00		
5.00	b) zur	n Liegenden mittels	sandig			nass					
3.00	c) dic	ht	d) sehr schwer zu bohren	e) graubi	aun	Tidos					
	f)		g) Quartär	h)	i)						
	a)										
	b)					-					
	c)		d)	e)							
	f)		g)	h)	i)						
¹) Eir	ntragung	nimmt der wissensc	chaftliche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 15.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-10	Bearb.: von der Bruck

RKS S2-10

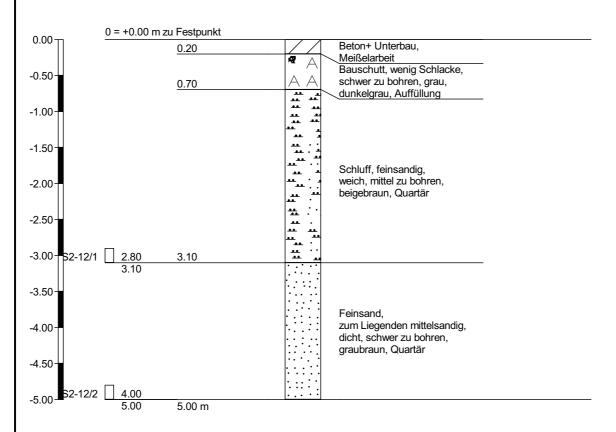

Höhenmaßstab 1:50

Anlage Bericht:

	Schichtenverzeichnis										Bericht:				
			für Bo	hrungen oh	ne durchgehen	de Ge	ewinnur	ig von gekei	rnten Proben	Az.	:				
Bauvorl	naben:	: Halle	en Mönchengladb	ach											
Bohru	ıng	Nr	RKS S2-10	/Blatt 1							tum: 5.02	2.2011			
1				2	1				3		4	5	6		
			nung der Boden: eimengungen	art					Bemerkungen		Er	ntnomr Probe	mmene oben		
Bis			zende Bemerkun	igen 1)					Sonderprobe				Tiefe		
unter Ansatz-			affenheit 3ohrgut	,	d) Beschaffenheit e) Farbe nach Bohrvorgang				Wasserführung Bohrwerkzeuge Kernverlust Sonstiges	Art	Art	Nr.	Tiefe in m (Unter- kante)		
punkt	'	Üblich Bener	e inung		Geologische ¹) h) ¹) i) Kalk- Benennung Gruppe gehalt								Karite)		
	a) \	√erbu	ndsteinpflaster+		<u> </u>										
	b)	vielise	larbeit						_						
0.30	Ĺ					T .			Direct-Push-Wase rprobr entnommer						
	c)			d) Meißel	arbeit	e)			(2HS)						
	f)			i)											
			kiesig, lagenwei er zu bohren, bra												
	b)														
0.80	c)			d) schwei	zu bohren	e)	braun,	schwarz	- erdfeucht						
	f)	g) Auffüllung h) i)													
	Schluff, schwach feinsandig, weich, leicht zu bohren, braunocker, Quartär														
3.00	b)			- feucht											
3.00	c) v	weich		d) leicht z	leicht zu bohren e) braunocker			ocker	Teucht						
	f)			g) Quartä	r	h)		i)							
	a) p	einsa mittelo	and, schluffig, dicht, schwer zu	bohren, gra	u , Quartär					C		S2- 10/1	3.60		
	b)								nass						
3.60	c) r	mittelo	dicht	d) schwer	zu bohren	e)	grau		leichter Benzingeruch						
	f)			g) Quartä	r	h)		i)							
			and, mittelsandig sehr schwer zu		ı , Quartär					C)	S2- 10/2	5.00		
	b)														
5.00	c) (dicht		d) sehr schwer zu e) grau				- nass							
	f)			g) Quartä	r	h)		i)							
¹) Eir	- ntragur	ng nin	nmt der wissensc	haftliche Bea	arbeiter vor.										

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 16.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-11	Bearb.: von der Bruck

RKS S2-11

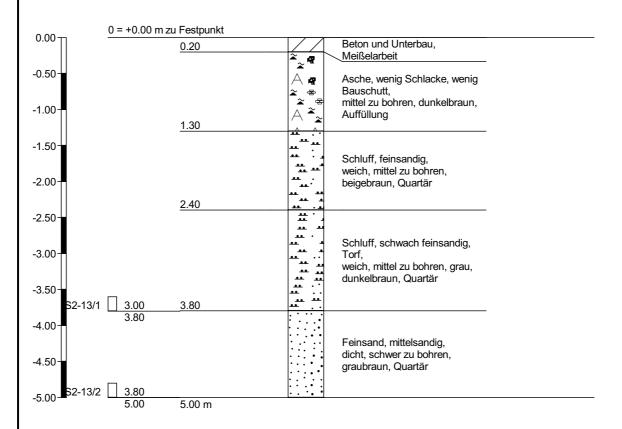


Höhenmaßstab 1:50

				Bericht:							
	nten Proben	Az.:									
Bauvorh	naben: Ha	llen Mönchengladl	bach								
Bohru	ıng N	r RKS S2-11	/Blatt 1				Datum: 16.0	2.2011			
1			2			3	4	5	6		
	a) Bendund	ennung der Boden Beimengungen	art			Bemerkungen	E	ntnom Probe			
Bis	b) Ergä	inzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe		
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr.	in m (Unter-		
punkt	f) Üblid Bend	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Sonstiges			kante)		
		on+ Unterbau, Selarbeit									
	b)					Direct-Push-Wass					
0.20	c)		d) Meißelarbeit	e)		rprobr entnommer (2HS)	1				
	f)		g)	h)	i)						
		acke, Bauschutt,	⊥ hwarz, grau, Auffüllung								
	b)	voi za bornen, doi	nwarz, graa, nananang								
0.70	c)		d) schwer zu bohren	e) schwa	rz, grau	trocken-erdfeucht					
	f)		g) Auffüllung	h)	i)						
	a) Schl weid	luff, feinsandig, h, mittel zu bohre	n, braunocker, Quartär		С	S2- 11/1	3.00				
3.00	b)			feucht							
3.00	c) weic	h	d) mittel zu bohren	e) braund	ocker	ab 2,7 m schwarz und fauliger Geruc					
	f)		g) Quartär	h)	i)						
	a) Fein dich	sand, t, schwer zu bohre	en, graubraun, Quartär				С	S2- 11/2	5.00		
5.00	b)										
5.00	c) dich	t	d) schwer zu bohren	e) graubr	aun	nass					
	f)		g) Quartär	h)	i)						
	a)										
	b)										
	c)		d)	e)							
	f)		g)	h)	i)						
¹) Ein	tragung n	immt der wissensc	haftliche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 16.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-12	Bearb.: von der Bruck

RKS S2-12

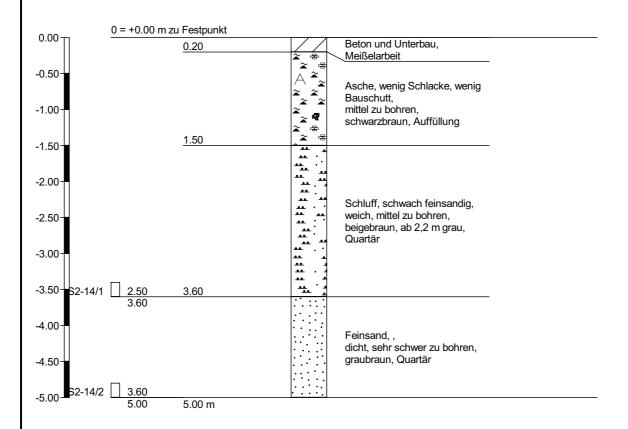


Höhenmaßstab 1:50

	67 Palamana akan dumbankan da Canimana ang makamban Pankan										Bericht:				
	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben														
Bauvorh	naben	ı: Hall	en Mönchengladb	ach											
Bohrung Nr RKS S2-12 /Blatt 1										Datui 16		2011			
1	2											5	6		
	a) Benennung der Bodenart und Beimengungen								Bemerkungen		nene en				
Bis			nzende Bemerkun	gen	1)				Sonderprobe			1 1000	<i>.</i> 11		
m unter Ansatz-	٠,		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Wasserführung Bohrwerkzeuge Kernverlust	Aı	rt	Nr.	Tiefe in m (Unter-		
punkt	f)	Üblicl		g)	Geologische ¹) Benennung		1) Gruppe	i) Kalk- gehalt	Sonstiges				kante)		
			n+ Unterbau, elarbeit												
	b)														
0.20	c)			d)	Meißelarbeit	e)									
	f)			g)		h)		i)							
		a) Bauschutt, wenig Schlacke, schwer zu bohren, grau, dunkelgrau, Auffüllung													
	b)														
0.70	c))			schwer zu bohren	e)	grau, o	lunkelgrau	erdfeucht						
	f)			g)	Auffüllung	h)		i)							
			uff, feinsandig, n, mittel zu bohrer	n, be	eigebraun, Quartär					С		S2- 12/1	3.10		
2.40	b)				feucht, zum Liegenden Klopfnässe										
3.10	c)	weich	1	d)	mittel zu bohren	e)	beigeb	raun	ab 2,8 m dunkelgrau und fauliger Geruch						
	f)			g)	Quartär	h)		i)	radiiger Gerden						
		Feins zum I	Liegenden mittels	and	ig, dicht, schwer zu bol	nren	ı, graubr	aun,		С		S2- 12/2	5.00		
5.00	b)	zum	Liegenden mittels	and	ig				nass						
0.00	c)	dicht		d)	schwer zu bohren	e)	graubr	aun	Tidos						
	f)			g)	Quartär	h)		i)							
	a)														
	b)														
	c)			d)		e)									
	f)			g)		h)		i)							
1) Fin	tradu	na nii	mmt der wissensc	haftl	iche Bearbeiter vor.										

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 16.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-13	Bearb.: von der Bruck

RKS S2-13

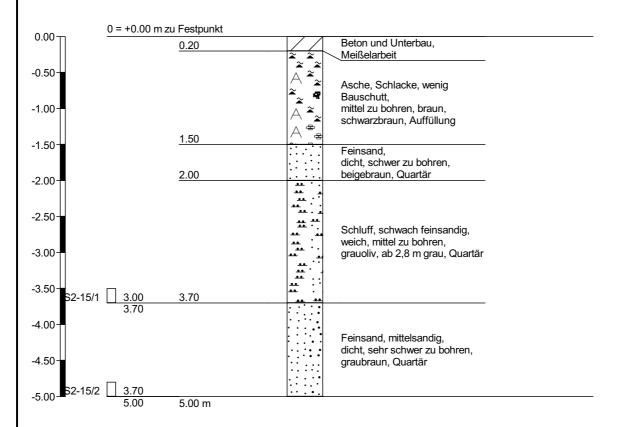


Höhenmaßstab 1:50

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben												
Bauvort	naben:	: Hall	en Mönchengladb	ach									
Bohrung Nr RKS S2-13 /Blatt 1										Datun 16.0	n: 02.201 ⁷	I	
1					2				3	4	5	6	
			nnung der Boden: Beimengungen	art	Bemerkungen		Entnom Prob						
Bis			nzende Bemerkun	gen	1)				Sonderprobe Wasserführung			Tiefe	
unter Ansatz-			naffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e) Farbe			Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
punkt		Üblicl Bene	ne nnung	g)	Geologische ¹) Benennung		1) Gruppe	i) Kalk- gehalt	Conougoo			narro)	
			und Unterbau,		-								
	b)	vieiise	elarbeit						Direct-Push-Wass rprobe entnommer				
0.20	c)			d)	Meißelarbeit	e)			(2HS) Bohrpunkt 1x versetzt (+0,6)				
	f)			g)		h)		i)					
			ne, wenig Schlacke, wenig Bauschutt, el zu bohren, dunkelbraun, Auffüllung										
	b)												
1.30	c)			d)	mittel zu bohren	e)	dunkel	braun	erdfeucht				
	f)			g)	Auffüllung	h)		i)					
	a) (Schlu weich	uff, feinsandig, n, mittel zu bohrei	n, be									
0.40	b)												
2.40	c) \	weich	1	d)	mittel zu bohren	e)	beigeb	raun	feucht				
	f)			g)	Quartär	h)		i)					
	a) (Schlu weich	uff, schwach feins n, mittel zu bohrei	and n, gr	ig, Torf, au, dunkelbraun, Quar	tär				С	S2- 13/1	3.80	
3.80	b)		feucht, lagenweis Klopfnässe										
3.00	c) \	weich	1	d)	mittel zu bohren	e)	grau, dunkel	braun	leichter Benzingeruch				
	f)			g)	Quartär	h)		i)					
	a) [Feins dicht,	and, mittelsandig schwer zu bohre	, en, g	raubraun, Quartär					С	S2- 13/2	5.00	
F.00	b)												
5.00	c) (dicht		d)	schwer zu bohren	e)	graubr	aun	nass				
	f)			g)	Quartär	h)		i)					
1) Fin	ntraguir	na nir	mmt der wissensc	haftl	iche Bearbeiter vor.								

Zeichnerische Darstellung von Bohrprofilen	Anlage:					
nach DIN 4023	Datum: 16.02.2011					
Projekt: Hallen Mönchengladbach	Projektnummer:					
Bohrung/Schurf: RKS S2-14	Bearb.: von der Bruck					

RKS S2-14

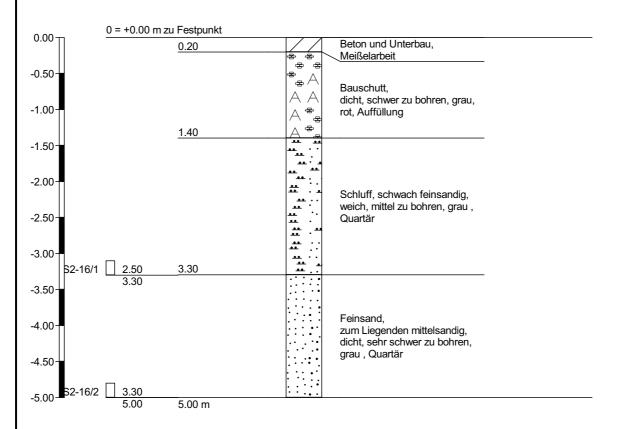


Höhenmaßstab 1:50

	fin Debrugere shoe durch ash and Continue and ash ash as										Bericht:				
	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben														
Bauvorh	nabei	n: Hall	en Mönchengladb	ach											
Bohru	Bohrung Nr RKS S2-14 /Blatt 1										atum: 16.02	2.2011			
1					3		4	5	6						
	a)	Bene	nnung der Boden: Beimengungen	art					Bemerkungen		Er	mene en			
Bis	b)		nzende Bemerkun	gen	1)				Sonderprobe			1 1000	, i		
m unter Ansatz-	c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e) Farbe			Wasserführung Bohrwerkzeuge Kernverlust		Art	Nr.	Tiefe in m (Unter-		
punkt	f)	Üblic Bene	he nnung	g)	Geologische ¹) Benennung		¹) Gruppe	i) Kalk- gehalt	Sonstiges				kante)		
	a)		n und Unterbau, elarbeit												
	b)								Direct-Push-Wass						
0.20	c)			d)	Meißelarbeit	e)			rprobr entnommer (2HS)	1					
	f)			g)		h)		i)							
	a)	a) Asche, wenig Schlacke, wenig Bauschutt, mittel zu bohren, schwarzbraun, Auffüllung													
	b)														
1.50	c)								erdfeucht						
	f)			g)	Auffüllung	h)		i)							
								,							
	(a)		uff, schwach feins n, mittel zu bohrer			С	S2- 14/1	3.60							
3.60	b)			feucht, lagenweise Klopfnässe	9										
3.00	c)	weich	ı	d)	mittel zu bohren	e)	beigeb 2,2 m	raun, ab grau	ab 2,5 m Benzingeruch						
	f)			g)	Quartär	h)		i)							
	a)	Feins dicht	sand, , , sehr schwer zu				С	S2- 14/2	5.00						
	b)				-				-						
5.00	c)	dicht		d)	sehr schwer zu bohren	e)	graubr	aun	nass						
	f)			g)	Quartär	h)		i)							
	a)					-									
	b)														
	c)			d)		e)									
	f)			g)		h)		i)							
1) Fin	tradi	ına niı	mmt der wissensc	haftl	icho Boarboitor vor			1	I						

Zeichnerische Darstellung von Bohrprofilen	Anlage:					
nach DIN 4023	Datum: 16.02.2011					
Projekt: Hallen Mönchengladbach	Projektnummer:					
Bohrung/Schurf: RKS S2-15	Bearb.: von der Bruck					

RKS S2-15

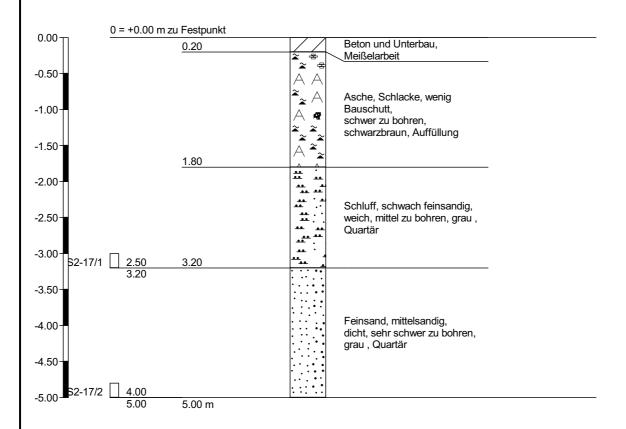


Höhenmaßstab 1:50

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben											Bericht:				
iai Boliidiigali Oline dalongaliende Gewillindiig von gekenttell Flobett																
Bauvort	naben:	: Hall	en Mönchengladt	oach												
Bohrung Nr RKS S2-15 /Blatt 1										Datum: 16.02.2011						
1	1 2									4		5	6			
			nnung der Boden Beimengungen	art	Bemerkungen			nomn Probe	nene en							
Bis m			nzende Bemerkur	ngen	1)				Sonderprobe Wasserführung				Tiefe			
unter Ansatz-			haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Aı	t	Nr.	in m (Unter-			
punkt		Üblicl Bene	he nnung	g)	Geologische ¹) Benennung		¹) Gruppe	i) Kalk- gehalt	Solistiges				kante)			
			n und Unterbau, elarbeit													
	b)															
0.20	c)			d)	Meißelarbeit	e)										
	f)			g)		h)		i)								
		Asche, Schlacke, wenig Bauschutt, mittel zu bohren, braun, schwarzbraun, Auffüllung									+					
	b)	Tilleoi	Za bornon, braa	11, 00	ATTAILED LAGIT, ACTIONAL	9										
1.50	c)			d)	mittel zu bohren	e)	braun,	rzbraun	erdfeucht							
	f)			g)	Auffüllung	h)		i)								
		Feins	and, schwer zu bohre													
	b)															
2.00	c) (dicht		d)	schwer zu bohren	e)	beigeb	raun	erdfeucht							
	f)			g)	Quartär	h)		i)								
	a) (Schlu weich	uff, schwach feins n, mittel zu bohre	sand n, gr	ig, auoliv, ab 2,8 m grau,	Qua	rtär			С		S2- 15/1	3.70			
	b)		feucht, lagenweis													
3.70	c) \	weich	ch d) mittel zu bohren e) grauoliv, ab 2,8 ab 2,8 m fauliger Geruch						ab 2,8 m fauliger							
	f)			g)	Quartär	h)		i)								
	a) [Feins dicht,	and, mittelsandig sehr schwer zu	j, bohi	ren, graubraun, Quartä	r				С		52- 15/2	5.00			
	b)															
5.00	c) (dicht		d)	sehr schwer zu bohren	e)	graubr	aun	nass							
	f)			g)	Quartär	h)		i)								
1) Fin	tradur	na nir	mmt der wissensc	haftl	iche Bearbeiter vor.				1							

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 16.02.2011		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S2-16	Bearb.: von der Bruck		

RKS S2-16



Höhenmaßstab 1:50

	SCNICNTENVERZEICNNIS für Bohrungen ohne durchgehende Gewinnung von gekernten Probei							Bericht:			
Bauvorhaben: Hallen Mönchengladbach											
Bauvorh	nabe	n: Hal	len Mönchengladb	ach			1	Datum			
Bohru	ıng	Ν	r RKS S2-16 /	Blatt 1					ı.)2.2011		
1				2			3	4	5	6	
	a)		ennung der Boden: Beimengungen	art			Bemerkungen		Entnom Prob		
Bis	b)	Ergä	nzende Bemerkun	gen ¹)			Sonderprobe Wasserführung			Tiefe	
unter Ansatz-	c)		haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe	!	Bohrwerkzeuge Kernverlust	Art	Nr.	in m (Unter-	
punkt	f)	Üblic Bene	he ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Sonstiges			kante)	
	a)		n und Unterbau, elarbeit								
1 1	b)						Direct-Push-Wass	se			
0.20	c)			d) Meißelarbeit	e)		rprobe entnommer (2HS)	ו			
	f)			g)	h)	i)					
	a)		schutt, , schwer zu bohre	en, grau, rot, Auffüllung							
	b)		,	, , , , ,							
1.40	c)			d)	e) grau		erdfeucht				
	f)	dicht	:	schwer zu bonren	grau,	1	_				
	1)			g) Auffüllung	h)	i)					
	a)	Schluff, schwach feinsandig, weich, mittel zu bohren, grau , Quartär						С	S2- 16/1	3.30	
	b)			feucht, lagenweise Klopfnässe	:						
3.30	c)	weicl	h	d) mittel zu bohren	e) grau		ab 2,5 m fauliger Geruch				
	f)			g) Quartär	h)	i)					
	a)	Feins zum		andig, dicht, sehr schwer	zu bohren, g	grau ,		С	S2- 16/2	5.00	
	b)	Quar zum	tär Liegenden mittels	andig	<u> </u>		_				
5.00	c)	dicht		d) sehr schwer zu bohren	e) grau		nass				
	f)			g) Quartär	h)	i)	-				
	a)				1	1					
	b)										
	c)			d)	e)		-				
	f)			g)	h)	i)					
1\				haftliche Rearbeiter vor				-	-	-	

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 16.02.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-17	Bearb.: von der Bruck

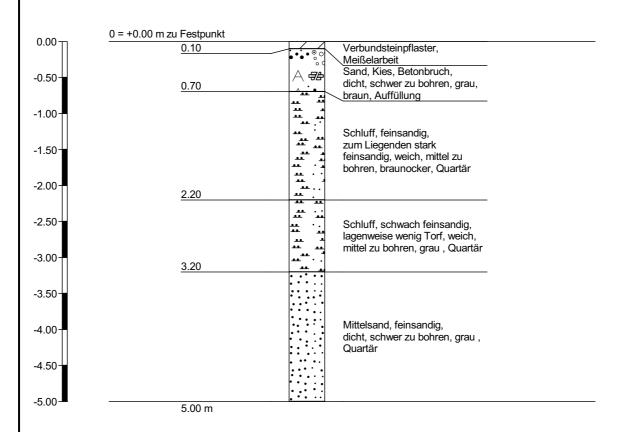
RKS S2-17

Höhenmaßstab 1:50

		für Bohrungen ohne durchgehende Gewinnung von gekernten Proben							nten Proben	Bericht: Az.:			
Bauvort	naben:	Hall	en Mönchengladb	ach									
Bohru				Blat							atum: 16.02	2.2011	
1					2				3		4	5	6
Die		a) Benennung der Bodenart und Beimengungen						Bemerkungen		Entnommene Proben			
Bis	b) E	Ergär	nzende Bemerkun	gen	1)				Sonderprobe Wasserführung				Tiefe in m (Unter-
unter Ansatz-			haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust	Art	Art	Nr.	
punkt	f) Ü	f) Übliche Benennung			Geologische ¹) Benennung		¹) Gruppe	i) Kalk- gehalt	Sonstiges				kante)
			n und Unterbau, elarbeit										
	b)								Direct-Push-Wass				
0.20	c)			d)	Meißelarbeit	e)			rprobe entnommei (2HS)	n			
	f)			g)		h)		i)					
		a) Asche, Schlacke, wenig Bauschutt, schwer zu bohren, schwarzbraun, Auffüllung											
1.80	b)	,01111	or za bornon, cor	ivvai	zoradn, 7 andiang								
	c)			d) schwer zu bohren e) schwarzbraun		erdfeucht							
	f)			g)	Auffüllung	h)		i)					
		Schluff, schwach feinsandig, weich, mittel zu bohren, grau , Quartär									С	S2- 17/1	3.20
0.00	b)	-						feucht, lagenweise Klopfnässe	9				
3.20	c) v	weich			mittel zu bohren	e) grau			leichter fauliger Geruch				
	f)			g)	Quartär	h)		i)					
	a) F	eins	and, mittelsandig , sehr schwer zu	, bohi	en, grau , Quartär						С	S2- 17/2	5.00
	b)												
5.00	c) d	licht		d)	sehr schwer zu bohren	e)	grau		nass				
	f)			g)	Quartär	h)		i)					
	a)												
	b)												
	c)			d)		e)							
	f)			g)		h)		i)					
1)					iche Bearbeiter vor								

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 23.03.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-18	Bearb.: von der Bruck

RKS S2-18



Höhenmaßstab 1:50

			Scriichtei		Bericht:				
		für B	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben						
Bauvorl	haben: H	allen Mönchenglad	bach						
Bohru	ung l	Nr RKS S2-18	/Blatt 1				Datum: 23.03	3.2011	
1			2			3	4	5	6
	a) Bei	nennung der Boder d Beimengungen	nart			Bemerkungen	Entnommene Proben		
Bis		jänzende Bemerkui	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-	.,	schaffenheit ch Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)
punkt		liche nennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				
		on und Unterbau, ißelarbeit							
	b)					Bohrpunkt 1x			
0.40	c)		d) Meißelarbeit	e)		versetzt (Beton>50)			
	f)		g)	h)	i)				
		nd, Bauschutt, nwer zu bohren, bra	aun, rot, Auffüllung						
	b)								
0.90	c)		d) schwer zu bohren	e) braun,	rot	erdfeucht			
	f)		g) Auffüllung	h)	i)				
		nluff, feinsandig, ich, leicht zu bohre	n, braunocker, Quartär						
2.80	b)		feucht, lagenweise	Э					
2.00	c) we	ich	d) leicht zu bohren	e) braund	ocker	Klopfnässe			
	f)		g) Quartär	h)	i)				
	a) Fei dic	nsand, mittelsandi ht, schwer zu bohr	g, en, graubraun, Quartär						
5.00	b)					nass			
3.00	c) dic	ht	d) schwer zu bohren	e) graubr	aun	liass			
	f)		g) Quartär	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
¹) Eir	ntragung	nimmt der wissensc	chaftliche Bearbeiter vor.						

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 23.03.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-19	Bearb.: von der Bruck

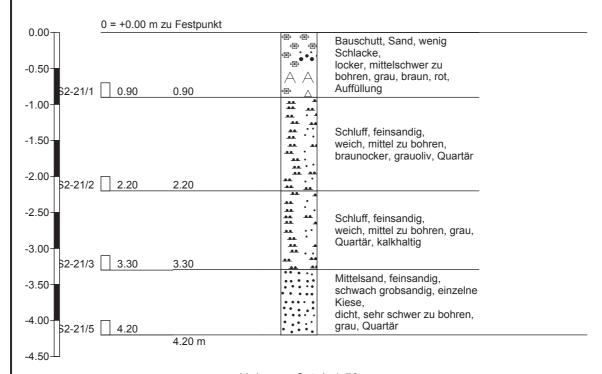
RKS S2-19

Höhenmaßstab 1:50

			Scriicitei		Bericht:					
		für Bo	nten Proben	Az.:						
Bauvort	naben: Ha	illen Mönchengladl	pach							
Bohru	ıng N	Ir RKS S2-19	/Blatt 1				Datum: 23.03	3.2011		
1			2			3	4	5	6	
		ennung der Boden Beimengungen	art			Bemerkungen	Entnommene Proben			
Bis		änzende Bemerkur	Sonderprobe Wasserführung			Tiefe				
m unter	c) Bes	chaffenheit	d) Beschaffenheit	e) Farbe		Bohrwerkzeuge		Nr.	in m	
Ansatz- punkt	nac f) Übli	h Bohrgut	nach Bohrvorgang g) Geologische 1)	h) 1)	i) Kalk-	Kernverlust Sonstiges			(Unter- kante)	
	,	ennung	Benennung	Gruppe	gehalt					
		oundsteinpflaster, Selarbeit								
	b)									
0.10	c)		d) Maigalastait	e)						
	, 		Meißelarbeit	0)						
	f)		g)	h)	i)					
		d, Kies, Betonbrud t, schwer zu bohre								
0.70	b)	<u>, </u>	<u> </u>							
	c) diah		d)	۵)		erdfeucht				
	c) dich	t	schwer zu bohren	e) grau, t	oraun					
	f)		g) Auffüllung	h)	i)					
		luff, feinsandig, n Liegenden stark t								
	l b)	n Liegenden stark t								
2.20	c) wei	ch	d) mittel zu bohren	e) braund	ocker	feucht				
	f)		g) Quartär	h)	i)					
	a) Sch lage	luff, schwach feins nweise wenig Torf	sandig, , weich, mittel zu bohren, g	ırau , Quartä	ir					
3.20	b) lage	enweise wenig Torf	:			feucht, lagenweise	е			
3.20	c) weid	ch	d) mittel zu bohren	e) grau		klopfnass				
	f)		g) Quartär	h)	i)					
	a) Mitt dich	elsand, feinsandig it, schwer zu bohr	en, grau , Quartär							
	b)									
5.00	c) dich	ıt	d) schwer zu bohren	e) grau		nass				
	f)		g) Quartär	h)	i)					
¹) Ein	tragung r	nimmt der wissensc	haftliche Bearbeiter vor.							

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 23.03.2011
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-20	Bearb.: von der Bruck

RKS S2-20

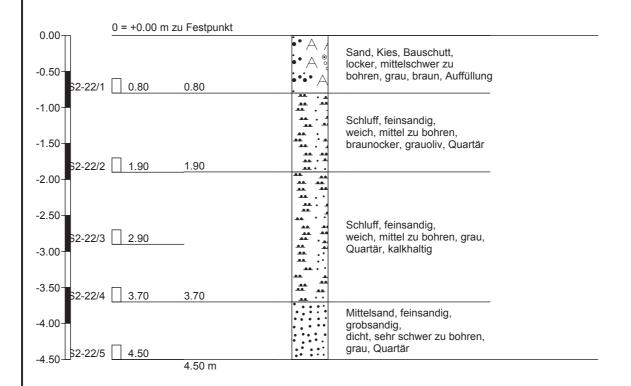


Höhenmaßstab 1:50

			Ochionich		Bericht:					
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von gekei	nten Proben	Az.:			
Bauvorl	naben: Ha	illen Mönchengladl	bach							
Bohru	ıng N	Ir RKS S2-20	/Blatt 1				Datum: 23.03	3.2011		
1			2			3	4	5	6	
		ennung der Boden Beimengungen	art			Bemerkungen	Entnommene Proben			
Bis	b) Ergá	änzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe	
unter Ansatz-		chaffenheit h Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
punkt	f) Übli Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Contagos			1.007	
	a) Beto Meil	on, Selarbeit								
	b)					Bohrpunkt 2x				
0.30	c)		d) Meißelarbeit	e)		versetzt (Beton jeweils >50)				
	f)		g)	h)	i)					
		d, Bauschutt, wer zu bohren, gra								
0.00	b)									
0.80	c)		d) schwer zu bohren	e) grau, braun		erdfeucht				
	f)		g) Auffüllung	h)	i)					
		luff, feinsandig, nweise stark feins								
0.00	l b)	nweise stark feins								
2.20	c) weid	ch	d) mittel zu bohren	e) braund	ocker	- feucht				
	f)		g) Quartär	h)	i)					
	lage		sandig, f, weich, mittel zu bohren, g	ırau, dunkell	oraun,		С	S22 0/1	3.10	
3.10	b) lage	artar enweise wenig Tor	f			feucht, lagenweise klopfnass	9			
0.10	c) weid	ch	d) mittel zu bohren	e) grau, dunke	lbraun	2,7-3,1 m leichter Benzingeruch				
	f)		g) Quartär	h)	i)					
		elsand, feinsandig it, schwer zu bohr	, en, graubraun , Quartär							
F 00	b)									
5.00	c) dich	ıt	d) schwer zu bohren	e) graubr	aun	nass				
	f)		g) Quartär	h)	i)					
¹) Eir	ntragung r	nimmt der wissensc	chaftliche Bearbeiter vor.							

Zeichnerische Darstellung von Bohrprofilen	Anlage:
nach DIN 4023	Datum: 25.07.2012
Projekt: Hallen Mönchengladbach	Projektnummer:
Bohrung/Schurf: RKS S2-21	Bearb.: von der Bruck

RKS S2-21

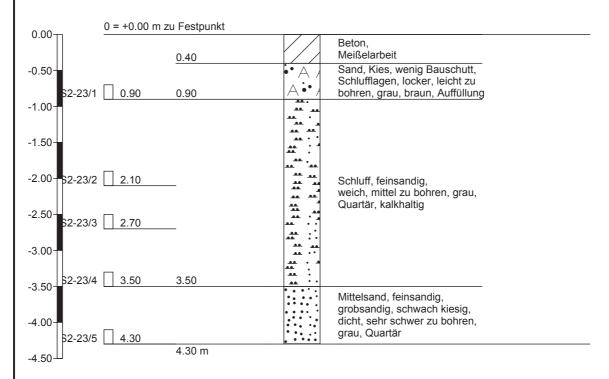


Höhenmaßstab 1:50

		für Bo	hrungen ohne durchgehen	ernten Proben	Az.:				
Bauvorl	haben: Ha	llen Mönchengla	dbach						
Bohru	ung N	r RKS S2-21	/Blatt 1				Datum 25.0	n: 07.2012	2
1			2			3	4	5	6
Bis	und	ennung der Bode Beimengungen				Bemerkungen	E	Prob	
]m	b) Ergä	nzende Bemerku	ngen 1)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-	c) Beso	chaffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)
punkt	f) Üblic Bene	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				nanto)
	a) Baus	schutt, Sand, we	nig Schlacke					S2- 21/1	0.90
0.90	b)					trocken			
0.90	c) locke	er	d) mittelschwer zu bohren	e) grau,	braun, rot	Trockeri			
	f)		g) Auffüllung	h)	i)				
	a) Schl	a) Schluff, feinsandig						S2- 21/2	2.20
	b)	fought							
2.20	c) weic	h	d) mittel zu bohren	e) braun grauo		feucht			
	f)		g) Quartär	h)	i)				
	a) Schl	uff, feinsandig			S2- 21/3	3.30			
	b)								
3.30	c) weic	h	d) mittel zu bohren	e) grau		feucht			
	f)		g) Quartär	h)	i) +				
	a) Mitte	elsand, feinsandi	g, schwach grobsandig, ei	inzelne Kies	se			S2- 21/5	4.20
4.20	b)					feucht, ab 3,7 m			
4.20	c) dicht		d) sehr schwer zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
	a)								
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
¹) Eir	ntragung n	immt der wissens	schaftliche Bearbeiter vor.	-					

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 25.07.2012		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S2-22	Bearb.: von der Bruck		

RKS S2-22


Höhenmaßstab 1:50

Anlage Bericht:

		für Bo	hrungen ohne durchgehen	ide G	ewinnu	ng von gek	ernten Proben		ericht: z.:		
Bauvor	haben: Ha	llen Mönchengla	dbach								
Bohru	ung N	r RKS S2-22	/Blatt 1						atum: 25.07	7.2012	2
1			2				3		4	5	6
	a) Bene	ennung der Bode Beimengungen	Bemerkungen		Er	ntnomi Probe					
Bis		nzende Bemerkı	Sonderprobe				Tiefe				
unter Ansatz-	c) Besc nach	chaffenheit Bohrgut	d) Beschaffenheit e) Farbe nach Bohrvorgang			Wasserführung Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter- kante)	
punkt	f) Üblic Bene	che ennung	g) Geologische ¹) Benennung	h)	¹) ∋ruppe	i) Kalk- gehalt					1.0.1.0)
	a) Sand	d, Kies, Bauschu	tt	'						S2- 22/1	0.80
	b)										
0.80	c) locke	er	d) mittelschwer zu e) grau, braun trocken		trocken						
	f)		g) Auffüllung	h)		i)					
	a) Schl	uff, feinsandig		'						S2- 22/2	1.90
1.90	b)	b)									
	c) weic	h	d) mittel zu bohren	e) braunocker, grauoliv		feucht					
	f)		g) Quartär	h)		i)					
	a) Schl	uff, feinsandig								S2- 22/3	2.90
3.70	b)						feucht, lagenweis	se		S2- 22/4	3.70
3.70	c) weic	h	d) mittel zu bohren	e)	grau		Klopfnass				
	f)		g) Quartär	h)		i) +					
	a) Mitte	elsand, feinsandi	g, grobsandig							S2- 22/5	4.50
4.50	b)						feucht, ab 3,7 m				
4.50	c) dicht	:	d) sehr schwer zu bohren	e)	grau		nass				
	f)		g) Quartär	h)		i)					
	a)										
	b)										
	c)		d)	e)							
	f)		g)	h)		i)					
¹) Eir	ntragung n	immt der wissen	schaftliche Bearbeiter vor.				'				

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 25.07.2012		
Projekt: Hallen Mönchengladbach	Projektnummer:		
Bohrung/Schurf: RKS S2-23	Bearb.: von der Bruck		

RKS S2-23

Höhenmaßstab 1:50

Anlage

Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: Bauvorhaben: Hallen Mönchengladbach Datum: Bohrung 25.07.2012 Nr RKS S2-23 /Blatt 1 2 3 4 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Bemerkungen Proben Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe . . m Bohrwerkzeuge in m c) Beschaffenheit unter d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt g) Geologische ¹) Benennung Übliche h) 1) i) Kalk-Benennung Beton b) Direkt-push-Grund wasserprobe 0.40 entnommen 1x 1,0 d) Meißelarbeit e) c) I 2x Headspase f) h) i) 0.90 S2-Sand, Kies, wenig Bauschutt 23/1 Schlufflagen 0.90 erdfeucht d) leicht zu bohren c) locker grau, braun f) h) i) g) Auffüllung S2-2.10 Schluff, feinsandig 23/2 S2-23/3 2.70 b) feucht, ab 2,7 m S2-3.50 3.50 starker 23/4 d) mittel zu bohren e) grau Benzingeruch weich i) + f) g) Quartär a) Mittelsand, feinsandig, grobsandig, schwach kiesig S2-4.30 23/5 b) feucht, ab 3,7 m 4.30 nass e) grau d) sehr schwer zu c) dicht bohren f) i) g) Quartär h) a) b) d) e) c) f) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

TEIL D

SANIERUNGSBEREICH 3: BENZINABSCHEIDER "KARNEVALHALLE", REME-OST

D 1 Ergebnisse der Voruntersuchungen

Im Rahmen von Gefährdungsabschätzungen, zuletzt durch agus 2010, wurden bei einer Rammkernsondierung im Umfeld des Benzinabscheiders im Osten der bis 1992 von der Britischen Rheinarmee genutzten ehem. Waschhalle ("Karnevalhalle") sensorische Auffälligkeiten (starker Benzingeruch in der wassergesättigten Bodenzone) festgestellt.

Eine daraufhin entnommene direct-push-Grundwasserprobe zeigte erhöhte Konzentrationen an BTEX und LAK mit deutlicher Überschreitung der Prüfwerte nach BBodSchV (1999) bzw. Geringfügigkeitsschwellenwerte nach LAWA (2004), so dass von einer Gefährdung des Schutzgutes Grundwasser auszugehen war und eine Sanierungsuntersuchung erforderlich wurde.

BTEX und LAK haben eine geringere Dichte als Wasser und gehören zu den sogenannten LNAPLs (light non aqueous phase liquids).

Für den unmittelbar südlich der "Karnevalhalle" verlaufenden begradigten Gladbach ist von einer Vorbelastung durch BTEX und PAK infolge von Sickerwasseraustritten aus einem ehem. Gaswerksstandort auszugehen.

D 2 Untersuchungsprogramm

Im Rahmen dieser Sanierungsuntersuchung sollen u.a. der Belastungsbereich abgegrenzt, die Ergebnisse hinsichtlich einer Sanierung bewertet und Sanierungsmöglichkeiten aufgezeigt und hinsichtlich der Kosten und des Nutzens abgewogen werden.

Dazu wurde folgendes Untersuchungsprogramm durchgeführt:

- 9 Rammkernsondierungen zur weiteren Erkundung und Abgrenzung der BTEX-/LAK-Belastung und Entnahme von Bodenproben
- Entnahme von direct-push-Grundwasserproben aus 2 Rammkernbohrlöchern,
- Analyse von 4 Bodenproben (2 sensorisch auffällige Proben (Benzingeruch) aus der oberen wassergesättigten Zone, 2 sensorisch unauffällige Proben des darunter folgenden grundwasserführenden Sediments) aus Rammkernsondierungen im näheren Umfeld des Benzinabscheiders auf leichtflüchtige aliphatische Kohlenwasserstoffe (LAK), BTEX, LHKW und Naphthalin,
- Analyse der beiden direct-push-Grundwasserproben auf LAK, BTEX, LHKW und Naphthalin,
- Einrichtung einer Grundwassermessstelle möglichst nah am Schadensherd (GWM 780166, Durchmesser 4 Zoll) durch das Bohrunternehmen F.C. van Dornick GmbH (47546 Kalkar, Wöhrmannstraße 29),
- Beprobung und Stichtagsmessung im Rahmen der Grundwasserkampagnen im Gesamtgebiet (vgl. Teil A) am 21./22.08.2012, 20./21.03.2013, 02./05.08.2013, 13./14.02.2014, 08./09.09.2014, 24./25.11.2014 und Untersuchung des Grundwassers auf die vor-Ort-Parameter pH-Wert, elektrische Leitfähigkeit, Redoxpotential und Sauerstoffgehalt sowie auf KW, Phenole, BTEX, LHKW, TOC, Arsen, Schwermetalle, Cyanide, Chlorid, Sulfat, Sulfid, Nitrat, Nitrit, Ammonium.

D 3 Ergebnisse der Sanierungsuntersuchung

D 3.1 Boden

Von den 9 durchgeführten Rammkernsondierungen erreichten 6 Bohrungen die geplante Endteufe von 5 m, bei 3 Bohrungen war ab 0,5 bis 0,7 m kein Bohrfortschritt zu verzeichnen.

Drei Bohrungen zeigten sensorische Auffälligkeiten, die im Bereich des Kapillarsaumes bzw. der oberen wassergesättigten Zone (aufschwimmende Phase, typisch für BTEX und LAK als LNAPLs) vorkamen: RKS S3-1 Ölgeruch, RKS S3-2 und S3-4 Öl- und Benzingeruch (vgl. Abb. D 1-1). Der darüber liegende grundwasserfreie Schluff und die darunter liegenden wasserführenden Sande sind unauffällig. Die Anschüttung in der Bohrung E 24 weist einen Benzingeruch auf.

In den untersuchten sensorisch auffälligen Proben mit Benzingeruch aus dem näheren Umfeld des Benzinabscheiders (RKS S3-2 und S3-4) waren nur LAK in geringen Konzentrationen nachweisbar, die darunter folgenden grundwasserführenden Sedimente sind sensorisch wie analytisch unauffällig (vgl. Tab. D 2-2).

D 3.2 Grundwasser

Der Grundwasserspiegel lag bei den bisherigen Stichtagsmessungen bei ca. 1,75 bis 2 m unter GOK. Dabei ist auf der Fläche unmittelbar nördlich des Sanierungsbereichs 3 kein bzw. nur ein sehr geringes Gefälle erkennbar (vgl. Abb. A 1-3 bis A 1-11). Die Höhendifferenz zwischen dem Grundwasserspiegel in GWM 780166 und dem als Vorfluter fungierenden Gladbach betrug dabei 55 bis 87 cm, so dass in Bachnähe ein größerer hydraulischer Gradient (ca. 1: 10 bis 1:15) mit entsprechender Abstandsgeschwindigkeit angenommen werden kann.

Erhöhte Schadstoffkonzentrationen (LAK max. 1700 μ g/l, BTEX max. 91 μ g/l) sind bisher nur in direct-push-Grundwasserproben unmittelbar neben dem Benzinabscheider gemessen worden (besonders Rammkernsondierung E 24 im Abstand von 1 m; vgl. Abb. D 1-1 und Tab. D 2-1).

Im Grundwasser der im näheren Abstrom etwa 10 m entfernt liegenden Messstelle 780166 waren bei keiner der bisher 5 Probenahmen LAK nachweisbar, BTEX nur zeitweise in geringen Spuren (max. 1 μ g/l bei den Beprobungen am 08./09.09.2014 und 24./25.11.2014, vgl. Tab. A 2-4 bis A 2-7).

D 4 Bewertung der Untersuchungsergebnisse

Die festgestellte LAK-/BTEX-Belastung im Grundwasser ist nach den vorliegenden Untersuchungsergebnissen auf den Bereich des Kapillarsaumes bzw. der oberen wassergesättigten Zone (aufschwimmende Phase) im unmittelbaren Umfeld des Benzinabscheiders konzentriert. Relevante Schadstoffeinträge sind im Grundwasser der nahegelegenen Messstelle GWM 780166 nicht erkennbar, Aussagen zu Schadstofffrachten damit nicht möglich.

Das ist vermutlich darauf zurückzuführen, dass der Abscheider nicht mehr mit lösemittelhaltigen Abwässern beschickt wird und der Schadensbereich versiegelt und überdacht ist, so dass keine Schadstoffverlagerung und -ausbreitung mit dem Sickerwasser erfolgt.

Gleichzeitig kann von einem natürlichen, anaeroben Abbau von LAK und BTEX ausgegangen werden.

D 5 Handlungsempfehlungen / Sanierungsmöglichkeiten und Kostenschätzung

Basierend auf den vorliegenden Gegebenheiten werden im folgenden für die Sanierung des festgestellten LAK-/BTEX-Schadens zwei Sanierungsmöglichkeiten vorgestellt, die sowohl von der "Beseitigungsquote" des Schadens als auch von den Kosten zwei Extreme darstellen:

Variante 1:

Bei dem festgestellten kleinräumigen Schaden ist eine praktikable Sanierungsmöglichkeit die Herdsanierung, d.h. Austausch des belasteten Bodens bis ca. 4 m Tiefe auf etwa 50 m² Fläche nach Reinigung und Ausbau des Benzinabscheiders. Dafür ist ein Abriss des Gebäude inkl. des Ausbaus der Bodenplatte erforderlich. Je nach Umfang der erforderlichen Abrissarbeiten ist mit Kosten in der Größenordnung von ca. 150.000 €zu rechnen.

Variante 1					
Position	Preis				
Abriss des Gebäudes, Ausbau Betonboden und -fundamente	100.000,-				
Erdarbeiten (Baustelleneinrichtung, Vermessungsarbeiten, Reinigung und Ausbau des Benzinabscheiders, Auskoffern des belasteten Bodens bis ca. 4 m Tiefe, Rückverfüllung, Gutachterliche Begleitung inkl. Sanierungsplanung, Erstellung A+S-Plan nach DGUV Regel 101-004 (früher BGR 128), Grundwasserüberwachung)	20.000,-				
Entsorgungskosten (400 t / 50,- €pro t)	20.000,-				
Sonstige Arbeitsschutzmaßnahmen (Messtechnische Überwachungen, Einsatz umgebungsluftunabhängiger Maschinen etc.)	6.000,-				
Gesamtsumme (netto)	146.000,-				

Variante 2:

Erhaltung der Versiegelung und Monitored Natural Attenuation (MNA; überwachter natürlicher Rückhalt und Abbau). Grundwasserüberwachung durch etwa halbjährliche Stichtagsmessungen und Beprobungskampagnen im Februar/März (vermuteter GW-Hochstand) und September/ Oktober (vermuteter GW-Tiefstand). Zunächst sollte der Untersuchungsumfang (analysierte Parameter und Anzahl der Messstellen) beibehalten werden, d.h. für das gesamte REME-Gelände mit 3 Belastungsschwerpunkten und 4 Sanierungsbereichen.

Variante 2				
Position	Preis			
GW-Stichtagsmessung, -beprobung und -analytik zweimal jährlich für das gesamte REME-Gelände	10.000,-			
GW-Monitoring anteilig für den Sanierungsbereich 3	2.500,-			
Gesamtsumme (netto) pro Jahr	2.500,-			

Basierend auf den genannten Gegebenheiten (Flächenversiegelung, enge Begrenzung des Schadens, keine Grundwassernutzung) ist zum gegenwärtigen Zeitpunkt für den LAK-/BTEX-Schaden in der Karnevalhalle keine Notwendigkeit einer aufwändigen und kostenintensiven Sanierung abzuleiten.

Damit sollte aus Gründen der Verhältnismäßigkeit Variante 2 vorgezogen werden. Die dafür erforderlichen Rahmenbedingungen (insbesondere eine intakte Versiegelung) müssen auch im Falle einer Umnutzung der Fläche erhalten bleiben.

In naher Zukunft ist jedoch die Renaturierung des Gladbachs geplant. Dafür wird ein bis zu 90 m breiter Streifen nördlich des Bahndamms in Anspruch genommen, in dem auch die gesamte "Karnevalhalle" mit dem LAK-/BTEX-Schaden liegt.

Im Zuge der Bodenarbeiten für die Bachrenaturierung muss dann auch die Auskofferung des belasteten Bodens erfolgen. Dabei besteht besonders beim Eingriff in die wassergesättigte Zone die Gefahr einer Mobilisierung der Schadstoffe (bes. LAK, BTEX), gegen die geeignete Maßnahmen ergriffen werden müssen (z.B. Einspundung).

Bis dahin sollte in jedem Fall weiterhin eine Grundwasserüberwachung erfolgen (Variante 2).

Alle Eingriffe in den Boden oder Entsiegelungsmaßnahmen auch außerhalb des festgestellten Belastungsbereichs sollten entweder vermieden werden bzw. müssten während der ganzen Zeit durch einen Bodengutachter begleitet werden, da zu befürchten ist, dass sich unter der großflächigen Versiegelung weitere Schadstoffnester befinden (z.B. durch unsachgemäße Ölwechsel etc.).

Anlage D 1

Abbildungen

Abb. D 1-1: Lageskizze der Rammkernsondierungen, BTEX- und LAK Gehalte in Grundwasserproben (in μ g/l) und sensorische Befunde

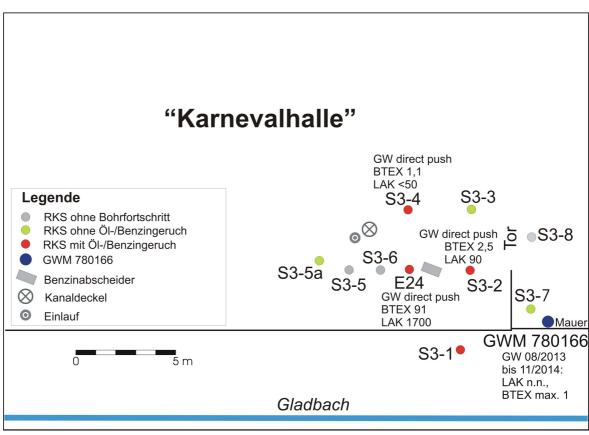


Abb. D 1-1:Lageskizze der Rammkernsondierungen, BTEX- und LAK-Gehalte in Grundwasserproben (in µg/l) und sensorische Befunde

Anlage D 2

Tabellen

Tab. D 2-1: Analysenergebnisse der direct-push-Grundwasseruntersuchungen und

Bewertungsgrundlagen

Tab. D 2-2: Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)

Tab. D 2-1: Analysenergebnisse der direct-push-Grundwasseruntersuchungen und Bewertungsgrundlagen

		E 24	S3-2	S3-4	Bewertung	sgrundlagen
					BBodSchV 1999 Prüfwert	LAWA 2004 Geringfügigkeits-
Parameter	Einheit					schwellenwert
LAK	μg/l	1700	90	<50	(200)	(100)
Benzol	μg/l	3,9	<0,50	<0,50	1	1
Toluol	μg/l	4,2	<0,50	<0,50		
Ethylbenzol	μg/l	2,7	<0,50	<0,50		
m-,p-Xylol	μg/l	67	1,8	1,1		
o-Xylol	μg/l	13	0,67	<0,50		
Summe nachgewiesener BTEX	μg/l	91	2,5	1,1	20	20
Vinylchlorid	μg/l	-	<2,5	<2,5		0,5
Dichlormethan	μg/l	-	<5,0	<5,0		
cis-1,2-Dichlorethen	μg/l	-	<5,0	<5,0		
Trichlormethan	μg/l	-	<0,50	<0,50		
1,1,1-Trichlorethan	μg/l	-	<0,50	<0,50		
Tetrachlormethan	μg/l	-	<0,50	<0,50		
Trichlorethen	μg/l	<1,0	<0,50	<0,50		10
Tetrachlorethen	μg/l	<1,0	<0,50	<0,50] "
Summe nachgewiesener LHKW	μg/l	<5,0	n.b.	n.b.	10	20
Naphthalin	μg/l	<5,0	<5,0	<5,0	2	1

Tab. D 2-2: Feststoffanalysenergebnisse und Zuordnungswerte nach LAGA (2004)

			Proben-Nr.					
		S3-2/1 (1,8-2,6 m)	\$3-2/2 (3,0-4,0 m)	S3-4/1 (2,0-2,7 m)	\$3-4/2 (3,3-4,0 m)		LAGA (2004)	
Parameter	Einheit					Z0	Z1	Z 2
LAK	mg/kg	22	<1,0	20	<1,0	(100)	(300)	(1000)
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Ethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
m-,p-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
o-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Summe nachgewiesener BTEX	mg/kg	n.b.	n.b.	n.b.	n.b.	1	1	1
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	_
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-
Summe nachgewiesener LHKW	mg/kg	n.b.	n.b.	n.b.	n.b.	1	1	1
Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010	-	-	-

DAP-PL-1236.00

SEWA Laborbetriebsgesellschaft m.b.H Kruppstraße 86 45145 Essen

Stadt Mönchengladbach - Fachbereich Umweltschutz und Entsorgung - Abteilung Bodenschutz z.Hd. Herr Volmer Rathaus Rheydt

Betrifft: Untersuchungsbericht AU37267

hier: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in Mönchengladbach-Lürrip. S 3

Sehr geehrter Herr Volmer,

41236 Mönchengladbach

gemäß Ihrem Auftrag vom 18.04.2011 führten wir für Sie chemische Untersuchungen durch. Der Untersuchungsbericht liegt diesem Schreiben als Anlage bei.

Für Rückfragen stehen wir Ihnen jederzeit gerne zur Verfügung und verbleiben

mit freundlichen Grüßen

Essen, den 02.05.2011

Andrews ferm

Andreas Görner

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Kruppstr. 86 45145 Essen

Tel. (0201)847363-0 Fax (0201)847363-332

Berichtsnummer: AU37267
Berichtsdatum: 02.05.2011

Projekt: 014.060.010 / 5431.120; REME, Lürriper Str. 400 in

Mönchengladbach-Lürrip. S 3

Auftraggeber: Stadt Mönchengladbach - Fachbereich Umweltschutz

und Entsorgung - Abteilung Bodenschutz

Rathaus Rheydt

41236 Mönchengladbach

Auftrag: 11.04.2011

Probeneingang: 15.04.2011

Untersuchungszeitraum: 15.04.2011 — 02.05.2011

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 4 Feststoffproben

2 Wasserproben

Andreas Görner

Suchreas ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Untersuchungsergebnisse

Labornummer	Ihre Probenbezeichnung		Probenentna	ahme
37267 - 1	S3-2/1			
37267 - 2	S3-2/2			
37267 - 3	S3-4/1			
37267 - 4	\$3-4/2			
	37267 - 1	37267 - 2	37267 - 3	372

• Untersuchungen im Feststoff

LAK	mg/kg	22	<1,0	20	<1,0
LHKW+VC					
1,1-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Dichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
trans-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
cis-1,2-Dichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlormethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Trichlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,2-Trichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Tetrachlorethen	mg/kg	<0,010	<0,010	<0,010	<0,010
Chlorbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,1,1,2-Tetrachlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Vinylchlorid	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2-Dichlorethan	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe LHKW	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
AKW					
Benzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Toluol	mg/kg	<0,010	<0,010	<0,010	<0,010
Ethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
m/p-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010
Styrol	mg/kg	<0,010	<0,010	<0,010	<0,010
o-Xylol	mg/kg	<0,010	<0,010	<0,010	<0,010
Isopropylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Propylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,3,5-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,4-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3-Trimethylbenzol	mg/kg	<0,010	<0,010	<0,010	<0,010
Indan	mg/kg	<0,010	<0,010	<0,010	<0,010
Inden	mg/kg	<0,010	<0,010	<0,010	<0,010
1,2,3,4-Tetralin	mg/kg	<0,010	<0,010	<0,010	<0,010
Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
2-Methylnaphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
1-Methylnaphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe BTEX	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Untersuchungsergebnisse

Labornummer	Ihre Probenbezeichnung	Probenentnahme
37267 - 5	S32	
37267 - 6	S34	

• Untersuchungen im Wasser

LAK	μg/l	90	<50
LHKW+VC			
1,1-Dichlorethan	μg/l	<5,0	<5,0
1,1-Dichlorethen	μg/l	<5,0	<5,0
1,2-Dichlorethan	μg/l	<5,0	<5,0
Dichlormethan	μg/l	<5,0	<5,0
trans-1,2-Dichlorethen	μg/l	<5,0	<5,0
cis-1,2-Dichlorethen	μg/l	<5,0	<5,0
Trichlormethan	μg/l	<0,50	<0,50
1,1,1-Trichlorethan	μg/l	<0,50	<0,50
Tetrachlormethan	μg/l	<0,50	<0,50
Trichlorethen	μg/l	<0,50	<0,50
1,1,2-Trichlorethan	μg/l	<5,0	<5,0
Tetrachlorethen	μg/l	<0,50	<0,50
Chlorbenzol	μg/l	<5,0	<5,0
1,1,1,2-Tetrachlorethan	μg/l	<0,50	<0,50
Vinylchlorid	μg/l	<2,5	<2,5
Summe LHKW	μg/l	n. berechenbar	n. berechenbar
AKW			
Benzol	μg/l	<0,50	<0,50
Toluol	μg/l	<0,50	<0,50
Ethylbenzol	μg/l	<0,50	<0,50
m/p-Xylol	μg/l	1,8	1,1
o-Xylol	μg/l	0,67	<0,50
Styrol	μg/l	<5,0	<5,0
Isopropylbenzol	μg/l	<5,0	<5,0
Propylbenzol	μg/l	<5,0	<5,0
1,3,5-Trimethylbenzol	μg/l	<5,0	<5,0
1,2,4-Trimethylbenzol	μg/l	23	<5,0
1,2,3-Trimethylbenzol	μg/l	12	<5,0
Indan		<5,0	<5,0
Inden	μg/l	<5,0	,-
	μg/I μg/I	<5,0	<5,0
1,2,3,4-Tetralin		•	· ·
1,2,3,4-Tetralin Naphthalin	μg/l	<5,0	<5,0
	μg/l μg/l	<5,0 <5,0	<5,0 <5,0
Naphthalin	µg/l µg/l µg/l	<5,0 <5,0 <5,0	<5,0 <5,0 <5,0
Naphthalin 2-Methylnaphthalin	μg/l μg/l μg/l μg/l	<5,0 <5,0 <5,0	<5,0 <5,0 <5,0 <5,0

Untersuchungsmethoden

Untersuchungen im Feststoff

LAK DIN ISO 22155

LHKW+VC DIN ISO 22155

AKW analog DIN 38407 F9-2

• Untersuchungen in der Originalsubstanz

LHKW+VC DIN ISO 22155

• Untersuchungen im Wasser

LAK analog DIN 38407 F9

LHKW+VC EN ISO 10301

AKW DIN 38407 F9-1

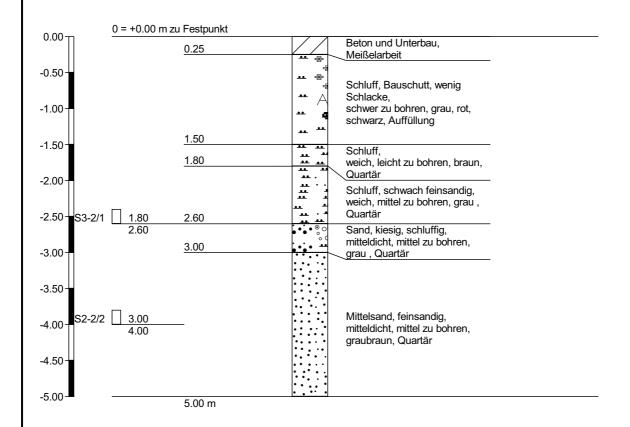


Anlage D 4

Bohrprofile und Schichtenverzeichnisse der Rammkernsondierungen

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 23.03.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S3-1	Bearb.: von der Bruck			

RKS S3-1

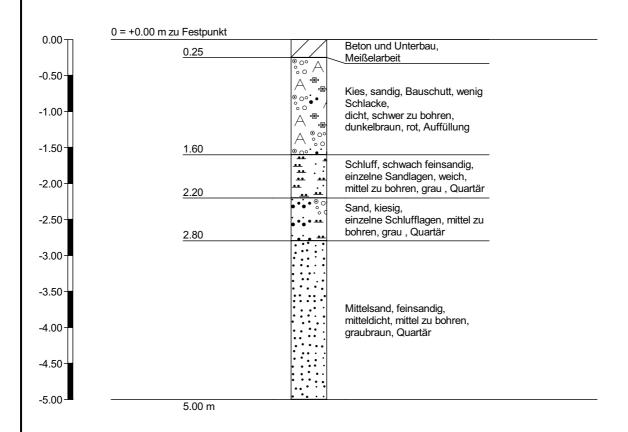


Höhenmaßstab 1:50

	Schichtenverzeichnis					Bericht:						
		für Bohrungen ohne durchgehende Gewinnung von gekernten Proben						Az.:				
Bauvorl	haber	n: Hal	len Mönchengladt	bach								
Bohru	ung	N	r RKS S3-1 /E	Blatt	1				D	atum: 23.03	3.2011	
1					2			3		4	5	6
Bis	a)	Bene und F	Bemerkungen		Entnommene Proben							
	b)		Beimengungen nzende Bemerkur	1)	Sonderprobe Wasserführung			11000	Tiefe			
unter Ansatz-	c)		haffenheit Bohrgut	Ľ	Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter- kante)
punkt	Ĺ		ennung	g)	Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt					
		Schl										
0.70	b)	einze	elne Schotter			I		- feucht				
0.70	c)	weicl	h	d)	leicht zu bohren	e) braun	grau					
	f)			g)	Auffüllung	h)	i)					
1.90	a)	Schluff, feinsandig, weich, leicht zu bohren, graubraun, Quartär										
	b)			feucht								
	c)	weicl	h	d) leicht zu bohren e) graubraun		Teuch						
	f)			g)	Quartär	h)	i)					
3.10	a)	Sand			С	S3- 1/1	2.40					
	b)			feucht, zum Liegenden nass								
	c)	mitte	ldicht	d)	mittel zu bohren	e) grau		1,9-2,4 m Ölgeruch				
	f)			g)	Quartär	h)	i)					
5.00	a) Mittelsand, feinsandig, mitteldicht, mittel zu bohren, graubraun, Quartär											
	b)							- nass				
	c)) mitteldicht			d) mittel zu bohren e) graubraun		Tiass					
	f)			g)	Quartär	h)	i)					
	a)	a)										
	b)						1					
	c)			d)		e)						
	f)			g)		h)	i)					
¹) Eir	ntragu	ıng ni	mmt der wissensc	haftli	che Bearbeiter vor.							

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 23.03.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S3-2	Bearb.: von der Bruck			

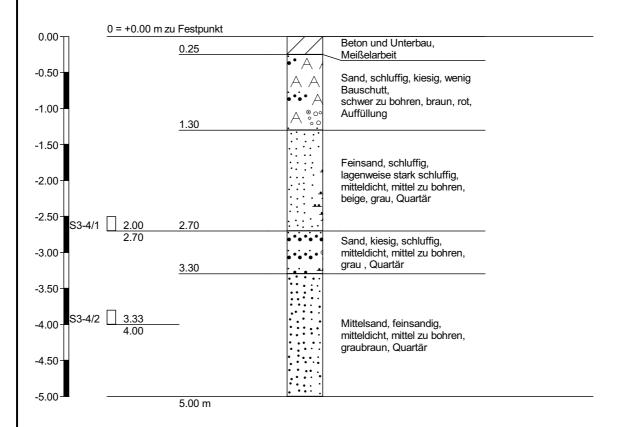
RKS S3-2



Höhenmaßstab 1:50

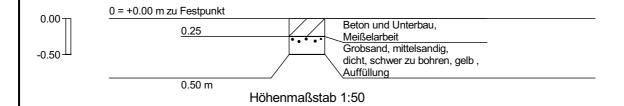
SCNICNTENVERZEICNNIS für Bohrungen ohne durchgehende Gewinnung von gekernten Proben								nten Proben		richt:			
										Az.			
Bauvort			len Mönchengladb r RKS S3-2 /E	Blatt	1						tum: 23.03	3.2011	
1					2				3		4	5	6
	a)	Bene und F	ennung der Boden: Beimengungen	art					Bemerkungen		Er	ntnomr Probe	
Bis	b)		nzende Bemerkun	igen	¹)				Sonderprobe Wasserführung			1 1000	Tiefe
unter Ansatz-	c)		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter- kante)
punkt	f)	Üblic Bene	he ennung	g)	Geologische ¹) Benennung		1) Gruppe	i) Kalk- gehalt	Solistiges				Karile)
	a)	a) Beton und Unterbau, Meißelarbeit											
0.25	c) d) Meißelarbeit e)						Direct-Push-Grund wasserprobe	d					
0.25							entnommen						
	f)			g)		h)		i)					
	a)		uff, Bauschutt, we		Schlacke, ot, schwarz, Auffüllung		'						
	b)												
1.50	c)			d)	schwer zu bohren		grau, ro		erdfeucht				
	f)			g)	Auffüllung	h)		i)					
	a)	Schlu	uff, h, leicht zu bohrer										
	b)												
1.80	c)	weicl	h	d)	leicht zu bohren	e)	braun		feucht				
	f)			g)	Quartär	h)		i)	•				
	a)		uff, schwach feins h, mittel zu bohrei		(Э	S3- 2/1	2.60					
	b)								feucht				
2.60	c)	weicl	h	d)	mittel zu bohren	e)	grau		Öl- und Benzingeruch				
	f)			g)	Quartär	h)		i)					
	a)	Sano	I, kiesig, schluffig Idicht, mittel zu bo	, ohrer	n. grau . Quartär	1							
	b)		,		, 0 ,								
3.00	c)	mitte	ldicht	d)	mittel zu bohren	e)	grau		nass				
	f)			g)	Quartär	h)		i)					
1) =:	. 		mmt der wiesensc						1				I

	Schichtenverzeichnis								:	
			für Bo	ohrungen ohne durchgehei	nde Gewinnuı	ng von geker	nten Proben	Az.:		
Bauvorh	naber	n: Hall	len Mönchengladt	pach						
Bohru	ıng	Nı	r RKS S3-2 /E	Blatt 2				Datum: 23.0	3.2011	
1				2			3	4	5	6
	a)	Bene und E	ennung der Boden: Beimengungen	art			Bemerkungen	E	ntnomi Probe	
Bis			nzende Bemerkun	igen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-			haffenheit Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr.	in m (Unter-
punkt	f) Übliche g) Geologische 1) h) 1) i) Kalk- Benennung Benennung Gruppe gehalt		Sonstiges			kante)				
	a)	Mitte mitte	lsand, feinsandig, ldicht, mittel zu be	ohren, graubraun, Quartäi				С	S2- 2/2	4.00
	b)		·							
5.00	c)	c) mitteldicht d) mittel zu bohren e) graubraun			nass					
	f)			g) Quartär	h)	i)				
	a)					1				
	b)									
	c) d) e)									
	f)	g) h) i)		_						
	a)									
	b)									
	c)			d)	e)					
	f)			g)	h)	i)				
	a)					<u> </u>				
	b)									
	c) d) e)									
	f)			g)	h)	i)				
	a)			ı		1				
	b)									
	c)			d)	e)					
	f)			g)	h)	i)				
1\				haftliche Bearbeiter vor						


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 23.03.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S3-3	Bearb.: von der Bruck				

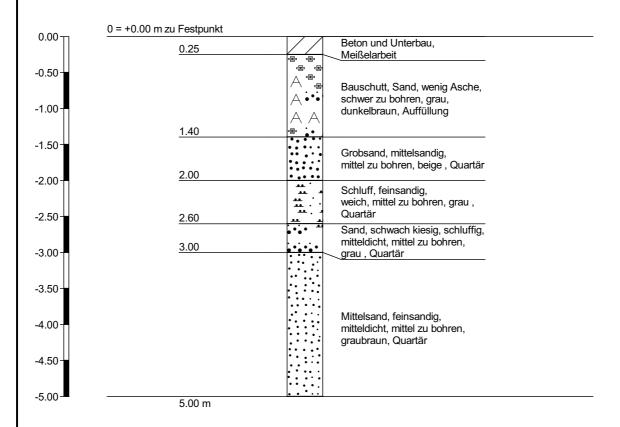
Höhenmaßstab 1:50

Schichtenverzeichnis							Bericht:		
		für B	ohrungen ohne durchgehen	de Gewinnur	ng von geke	rnten Proben	Az.:		
Bauvorl	naben: Ha	allen Mönchenglad	bach						
Bohru	ung N	Ir RKS S3-3 /	Blatt 1				Datum: 23.03	3.2011	
1			2			3	4	5	6
		ennung der Boder Beimengungen	nart			Bemerkungen	E	ntnom Probe	
Bis	b) Erga	änzende Bemerkui	ngen ¹)			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		chaffenheit h Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	in m (Unter- kante)
punkt	f) Übli Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt				, Karto,
	a) Beto	on und Unterbau, ßelarbeit	, ,						
	b)	iseiai beit							
0.25			۵۱			-			
	c)		d) Meißelarbeit	e)					
	f)		g)	h)	i)				
			⊥ utt, wenig Schlacke, en, dunkelbraun, rot, Auffü	llung					
1.60	b)			-					
	c) dich	nt	d) schwer zu bohren	e) dunke	lbraun, rot	erdfeucht			
	f)		g) Auffüllung	h)	i)				
		luff, schwach fein elne Sandlagen, v	sandig, veich, mittel zu bohren, gra						
	b) einz	elne Sandlagen		feucht					
2.20	c) wei	ch	d) mittel zu bohren	e) grau	e) nace		egenden		
	f)		g) Quartär	h)	i)				
	a) San einz								
2.80	b) einz	elne Schlufflagen							
2.00	c)		d) mittel zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
	a) Mitt mitt	elsand, feinsandig eldicht, mittel zu b	, ohren, graubraun, Quartär						
	b)								
5.00	c) mitt	eldicht	d) mittel zu bohren	e) graubr	aun	- nass			
	f)		g) Quartär	h)	i)				
¹) Eir	ntragung r	nimmt der wissensc	chaftliche Bearbeiter vor.				'		


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 23.03.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S3-4	Bearb.: von der Bruck				

Höhenmaßstab 1:50

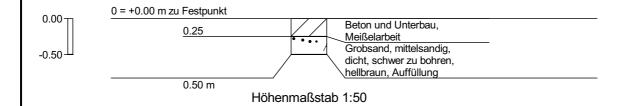
Schichtenverzeichnis							Bericht	:		
		für Bo	ohrungen ohne durchgeher	nde Gewinnur	ng von geke	nten Proben	Az.:			
Bauvort	naben: Ha	llen Mönchengladt	oach							
Bohru	ıng N	Ir RKS S3-4 /E	Blatt 1				Datum: 23.03	3.2011		
1			2			3	4	5	6	
		ennung der Boden Beimengungen	art			Bemerkungen	E	ntnomi Probe		
Bis		inzende Bemerkur	ngen ¹)			Sonderprobe Wasserführung			Tiefe	
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)	
punkt	f) Übli Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Conouged			Kartoj	
		a) Beton und Unterbau, Meißelarbeit								
0.05	b)					Direct-Push-Grund	d			
0.25	1 - 3					wasserprobe entnommen				
	f)		g)	h)	i)					
			, wenig Bauschutt, aun, rot, Auffüllung							
	b)		-							
1.30	c)		d) schwer zu bohren	e) braun,	rot	erdfeucht				
	f)		g) Auffüllung	h)	i)					
	lage		uffig, mitteldicht, mittel zu t		С	S3- 4/1	2.70			
0.70	b) lage	rtar nweise stark schlu	uffig	feucht, ab 2,2 nass ab 2,0						
2.70	c) mitte	d) mittel zu bohren e) beige, grau				Benzingeruch und schwarze Verfärbung				
	f)		g) Quartär	h)	i)	Vortaina				
	a) Sand, kiesig, schluffig, mitteldicht, mittel zu bohren, grau , Quartär									
3.30	b)					2000				
3.30	c) mitte	eldicht	d) mittel zu bohren	e) grau		nass				
	f)		g) Quartär	h)	i)					
	a) Mitte mitte	elsand, feinsandig eldicht, mittel zu b	, ohren, graubraun, Quartär				С	S3- 4/2	4.00	
F 60	b)									
5.00	c) mitte	eldicht	d) mittel zu bohren	e) graubr	aun	nass				
	f)		g) Quartär	h)	i)					
¹) Ein	tragung n	immt der wissensc	haftliche Bearbeiter vor.							


Zeichnerische Darstellung von Bohrprofilen nach DIN 4023	Anlage: Datum: 23.03.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S3-5	Bearb.: von der Bruck				

Schichtenverzeichnis							Bericht					
		für B	ohrungen ohne durchgeher	nde Gewinnur	ng von geke	rnten Proben	Az.:					
Bauvorl	haben: Ha	llen Mönchenglad	bach									
Bohru	ung N	r RKS S3-5 /	Blatt 1				Datum: 23.00	3.2011				
1			2			3	4	5	6			
	a) Ben- und	ennung der Boder Beimengungen	nart			Bemerkungen	E	ntnom Probe				
Bis	b) Ergá	inzende Bemerku	ngen ¹)			Sonderprobe Wasserführung			Tiefe			
unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges	Art	Nr.	in m (Unter- kante)			
punkt	f) Üblic Ben	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt							
	a) Beto	on und Unterbau, Selarbeit										
	b)					Bohrpunkt 1x						
0.25	c)		d) Meißelarbeit	e)		versetzt (+0,5)						
	f)		g)	h)	i)							
	a) Grol	osand, mittelsand t, schwer zu bohr	⊥ ig, ·en, gelb , Auffüllung									
	b)					trocken						
0.50	c) dich	t	d) schwer zu bohren	e) gelb		ab 0,5 m kein Bohrfortschritt						
	f)		g) Auffüllung	h)	i)							
	a)			•								
	b)											
	c)		d)	e)								
	f)		g)	h)	i)							
	a)		1	1	1							
	b)					-						
	c)		d)	e)								
	f)		g)	h)	i)							
	a)		•	1								
	b)											
	c)		d)	e)								
	f)		g)	h)	i)							
¹) Eir	ntragung n	immt der wissens	chaftliche Bearbeiter vor.		1		<u> </u>		1			

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 23.03.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S3-5A	Bearb.: von der Bruck			

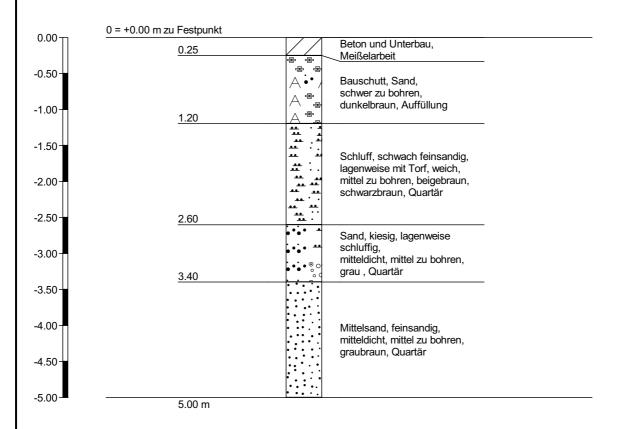
RKS S3-5A



Höhenmaßstab 1:50

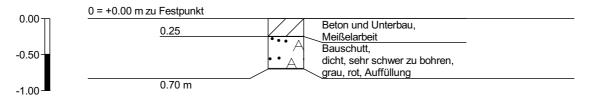
	Schichtenverzeichnis								
		für Bo	ohrungen ohne durchgehen	de Gewinnur	ng von geker	nten Proben	Az.:		
Bauvort	naben: Hal	len Mönchengladl	oach						
Bohru	ıng N	r RKS S3-5A	/Blatt 1				Datum: 23.03	3.2011	
1			2			3	4	5	6
		ennung der Boden Beimengungen	art			Bemerkungen	E	ntnom Probe	
Bis		nzende Bemerkur	ngen ¹)	Sonderprobe Wasserführung			Tiefe		
m unter		haffenheit	d) Beschaffenheit	e) Farbe		Bohrwerkzeuge Kernverlust		Nr.	in m (Unter-
Ansatz- punkt	nach f) Üblic	Bohrgut he	nach Bohrvorgang g) Geologische ¹)	h) ¹)	i) Kalk-	Sonstiges			kante)
	['] Bene	ennung	Benennung	Gruppe	gehalt				
		n und Unterbau, elarbeit							
	b)								
0.25	c)		d) Maio alastait	e)					
			d) Meißelarbeit	0,					
	f)		g)	h)	i)				
		schutt, Sand, wen	⊔ ig Asche, au, dunkelbraun, Auffüllung		I				
	b)		<u> </u>	·		-			
1.40	c)		d)	e) grau,		erdfeucht			
	<u> </u>		schwer zu bohren	dunke	lbraun				
	f)		g) Auffüllung	h)	i)				
		sand, mittelsandi I zu bohren, beige							
2.00	b)			feucht, an der					
2.00	c)		d) mittel zu bohren	e) beige		Basis nass			
	f)		g) Quartär	h)	i)				
	a) Schl weic	uff, feinsandig, h, mittel zu bohre							
2.60	b)					2000			
2.60	c) weic	h	d) mittel zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
	a) Sano mitte	l, schwach kiesig ldicht, mittel zu b	, schluffig, ohren, grau , Quartär						
	b)								
3.00	c) mitte	ldicht	d) mittel zu bohren	e) grau		nass			
	f)		g) Quartär	h)	i)				
¹) Ein	tragung ni	mmt der wissensc	haftliche Bearbeiter vor.	1		1			

	Schichtenverzeichnis								Ве	richt:		
		für B	ohru	ngen ohne durchgehen	de Gewinnur	ng von (geker	nten Proben	Az	.:		
Bauvorl	haben: Hal	len Mönchenglad	bach						L D-	4		
Bohru	ung N	r RKS S3-5A	/Blat	tt 2						tum: 23.03	.2011	
1				2				3		4	5	6
	a) Bene und I	Benennung der Bodenart und Beimengungen						Bemerkungen		Er	ntnomr Probe	
Bis m	b) Ergä	nzende Bemerku	ngen	1)				Sonderprobe Wasserführung	1			Tiefe
unter Ansatz-		haffenheit Bohrgut	d)	Beschaffenheit nach Bohrvorgang	e) Farbe			Bohrwerkzeuge Kernverlust Sonstiges	:	Art	Nr.	in m (Unter- kante)
punkt	f) Üblic Bene	he ennung	g)	Geologische ¹) Benennung	h) ¹) Gruppe	i) K	alk- ehalt	Soristiges				Karile)
		lsand, feinsandig ldicht, mittel zu b		n, graubraun, Quartär								
	b)											
5.00	c) mitteldicht d) mittel zu bohren e) graubraun nass					nass						
	f)		g)	Quartär	h)	i)						
	a)											
	b)											
	c)		d)		e)							
	f)		g)		h)	i)						
	a)											
	b)											
	c)		d)		e)							
	f)		g)		h)	i)						
	a)		-		1							
	b)											
	c)		d)		e)							
	f)		g)		h)	i)						
	a)		'		1							
	b)											
	c)		d)		e)							
	f)		g)		h)	i)						
1) Eir	ntragung ni	mmt der wissens	chaftl	iche Bearbeiter vor.	ı			l				1


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 23.03.2011				
Projekt: Hallen Mönchengladbach	Projektnummer:				
Bohrung/Schurf: RKS S3-6	Bearb.: von der Bruck				

	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben								Bericht:			
		für B	Az.:									
Bauvorl	haben: Ha	llen Mönchenglad	bach									
Bohru	ung N	r RKS S3-6 /	Blatt 1				Datum: 23.03	3.2011				
1			2			3	4	5	6			
	a) Bendund	ennung der Boder Beimengungen	nart	Bemerkungen Sonderprobe Wasserführung	E	mene en						
Bis		inzende Bemerku	ngen ¹)				T					
m unter Ansatz-		chaffenheit n Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Nr.	Tiefe in m (Unter- kante)			
punkt	f) Üblid Bend	che ennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt							
		n und Unterbau, Selarbeit										
	b)			-								
0.25	c)		d) Meißelarbeit	e)								
	f)		g)	h)	i)							
	a) Grot dich	osand, mittelsand t, schwer zu bohr	⊥ ig, en, hellbraun, Auffüllung									
0.50	b)			trocken								
0.50	c) dich	t	d) schwer zu bohren	e) hellbra	aun	ab 0,5 m kein Bohrfortschritt						
	f)		g) Auffüllung	h)	i)							
	a)											
	b)											
	c)		d)	e)	e)							
	f)		g)	h)	i)							
	a)		1									
	b)											
	c)		d)	e)								
	f)		g)	h)	i)							
	a)		1									
	b)			-								
	c)		d)	e)		-						
	f)		g)	h)	i)	-						
1) Eir	ntragung n	immt der wissenso	chaftliche Bearbeiter vor.									

Zeichnerische Darstellung von Bohrprofilen	Anlage:			
nach DIN 4023	Datum: 23.03.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S3-7	Bearb.: von der Bruck			


RKS S3-7

Höhenmaßstab 1:50

Schichtenverzeichnis									Bericht:			
für Bohrungen ohne durchgehende Gewinnung von gekernten Proben												
Bauvorl	haben: Ha	llen Mönchengladl	bach									
Bohru	ung N	Ir RKS S3-7 /E	Blatt 1				Datum: 23.00	3.2011				
1			3	4	5	6						
		ennung der Boden Beimengungen	art	Bemerkungen	Entnommene Proben							
Bis		inzende Bemerkur	ngen ¹)	Sonderprobe			T:-f-					
m unter	c) Bes	chaffenheit	d) Beschaffenheit	e) Farbe		Wasserführung Bohrwerkzeuge		Nr.	Tiefe in m			
Ansatz- punkt	nach f) Üblid	n Bohrgut	nach Bohrvorgang	h) ¹) i) Kalk-		Kernverlust Sonstiges			(Unter- kante)			
	,	ennung	g) Geologische ¹) Benennung	Gruppe	gehalt							
		on und Unterbau, Selarbeit										
	b)											
0.25	c)		d) Meißelarbeit	heit e)								
	f)		g)	h)	i)							
		schutt, Sand,										
	b)	wer zu bonren, du	nkelbraun, Auffüllung									
1.20				erdfeucht								
	c)		d) schwer zu bohren	e) dunkelbraun								
	f)		g) Auffüllung	h)	i)							
	lage	luff, schwach feins nweise mit Torf, w warzbraun, Quarta	veich, mittel zu bohren, beig									
	I b)	maizbrauri, Quarta nweise mit Torf	31	feucht, zum Liegenden nass								
2.60	c) weic	ch	d) mittel zu bohren	e) beigebraun, schwarzbraun								
	f)		g) Quartär	h)	i)							
		d, kiesig, lagenwe eldicht, mittel zu b	ise schluffig, ohren, grau , Quartär									
3.40	b)											
3.40	c) mitte	eldicht	d) mittel zu bohren	e) grau		nass						
	f)		g) Quartär	h)	i)							
	a) Mitte	elsand, feinsandig eldicht, mittel zu b	, ohren, graubraun, Quartär									
	b)											
5.00	c) mitte	eldicht	d) mittel zu bohren	e) graubr	aun	nass						
	f)		g) Quartär	h)	i)							
¹) Eir	ntragung n	immt der wissensc	chaftliche Bearbeiter vor.									

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023	Anlage: Datum: 23.03.2011			
Projekt: Hallen Mönchengladbach	Projektnummer:			
Bohrung/Schurf: RKS S3-8	Bearb.: von der Bruck			

Höhenmaßstab 1:50

Schichtenverzeichnis									Bericht:				
für Bohrungen ohne durchgehende Gewinnung von gekernten Proben									nten Proben	Az	z.:		
Bauvorh	naben	ı: Haller	n Mönchengladb	ach									
Bohru	ıng	Nr	RKS S3-8 /E	Blatt	1						atum: 23.03	.2011	
1	1 2										4	5	6
	Benennung der Bodenart und Beimengungen								Bemerkungen	Entnommene Proben			
Bis		b) Ergänzende Bemerkungen ¹)							Sonderprobe				T' . C .
m unter	c)	Bescha	affenheit	d)	Beschaffenheit	e)	Farbe		Wasserführung Bohrwerkzeuge	Art	Art	Nr.	Tiefe in m
Ansatz- punkt		nach Bohrgut Übliche			nach Bohrvorgang g) Geologische 1)		1)	i) Kalk-	Kernverlust Sonstiges			(Unter- kante)	
		Beneni		g)	Benennung	(Gruppe	i) Kalk- gehalt					
		Beton i Meißel	und Unterbau, arbeit										
	b)												
0.25	c)	;)			d) Meißelarbeit		e)						
	f)			g)		h)		i)					
	a) Bauschutt, dicht, sehr schwer zu bohren, grau, rot, Auffüllung												
	b)	trocken-											
0.70	c)	dicht		d)				ab 0,7 m kein Bohrfortschritt					
	f)	f)			g) Auffüllung			i)					
	a)												
	b)												
	c)) d) e)											
	f)			g)		h)		i)					
	a)												
	b)												
	c)	c)			d)		e)						
	f)			g)		h)		i)					
	a)												
	b)												
	c)) d) e)											
	f)			g)	g) h) i)		i)						
¹) Ein	ntragu	ng nim	mt der wissensc	haftl	iche Bearbeiter vor.								

TEIL E ZUSAMMENFASSUNG

Im Rahmen von Gefährdungsabschätzungen, zuletzt durch agus (2010), wurden auf dem ehem. Militärstützpunkt der britischen Rheinarmee REME (Royal Electrical and Mechanical Engineers) schließlich drei Belastungsschwerpunkte festgestellt, die nach den vorliegenden Ergebnissen weitere Untersuchungen im Hinblick auf eine Sanierung erforderlich machten:

- Sanierungsbereich 1: ehem. Entfettungsanlage (1b) mit hoher Belastung an 1,1,1-Trichlorethan (TCA) in der Bodenluft und direct-push-Grundwasserproben und benachbarter Öl-/Benzin-Abscheider im Innenhof Fa. Pollrich (1a) mit hohen BTEX-/LAK-Konzentrationen in der Bodenluft und direct-push-Grundwasserproben,
- **Sanierungsbereich 2:** ehem. Generatorenprüfstand mit sehr hohen BTEX-/LAK-Konzentrationen in direct-push-Grundwasserproben,
- **Sanierungsbereich 3:** Abscheider im Osten der ehem. Waschhalle mit erhöhten BTEX-/ LAK-Konzentrationen in direct-push-Grundwasserproben.

Im Hinblick auf eine Sanierung sollen u.a. die Belastungsbereiche abgegrenzt und Sanierungsmöglichkeiten aufgezeigt werden.

Neben den festgestellten größeren Belastungsschwerpunkten muss auf dem gesamten, heute weitgehend versiegelten REME-Gelände mit kleinräumigen bzw. punktuellen Kontaminationen z.B. infolge "unsachgemäßer" Ölwechsel oder Entfettungs-/Reinigungsarbeiten sowie durch Handhabungsverluste bei Betankungen gerechnet werden.

Das Büro agus wurde mit Gutachtervertrag vom 28.01.2011 mit den Sanierungsuntersuchungen für die 3 Sanierungsbereiche beauftragt.

Sanierungsbereich 1

Nach den bisherigen Stichtagsmessungen zeichnet sich für den Sanierungsbereich 1 ein sehr geringer hydraulischer Gradient ab: meist etwa 1:1000, max. 1:400, zeitweise <1:4000. Bei einem gemessenen kf-Wert von 8•10⁻⁴ m/s (Mull & Partner 1993) und einer angenommen Porosität von 20 % bedeutet das eine Abstandsgeschwindigkeit von meist ca. 125 m/Jahr, max. 315 m/Jahr, zeitweise <30 m/Jahr bei östlicher Fließrichtung.

Bei dem vorliegenden sandig-kiesigen Porengrundwasserleiter nicht zu erklären ist das starke GW-Gefälle auf wenigen Metern zwischen den Messstellen westlich bzw. am Westrand der Lohstraße (GWM 780101 und 780130) einerseits und der neuen Messstelle 780174 auf der Ostseite der Lohstraße andererseits mit einem um ca. 0,6 m niedrigeren GW-Stand.

Folgendes Untersuchungsprogramm wurde durchgeführt:

<u>Sanierungsbereich 1a:</u> Abgrenzung der BTEX-/LAK-Belastung durch Rammkernsondierungen und sensorische Prüfung, Entnahme und Analytik von Boden- und direct-push-Grundwasserproben.

Sanierungsbereich 1b: Rammkernsondierungen und sensorische Prüfung, Entnahme und Analytik von headspace-Proben (in Methanol-Vorlage) zur Erkundung der Verteilung und Konzentrationen von 1,1,1-Trichlorethan in der ungesättigten und gesättigten Bodenzone des Schadensherdes, Entnahme und Analytik von direct-push-Grundwasserproben sowie Einrichtung einer Grundwassermessstelle auf der Ostseite der Lohstraße im GW-Abstrom, Beprobung und Analytik des Grundwassers aus allen Messstellen.

Ergebnisse:

Sanierungsbereich 1a: Maximal-Konzentration in direct-push-Grundwasserproben BTEX 710 μ g/l, TCA 880 μ g/l, LAK 40000 μ g/l im Umfeld des Öl-/Benzin-Abscheiders und entlang der Kanalisation zur Lohstraße.

In direct-push-Grundwasserproben im Abstrom östlich der Lohstraße konnten LAK, BTEX und LHKW ebenso wenig nachgewiesen werden, wie in der neu errichteten Grundwassermessstelle 780174. Der Grundwasserstand liegt hier etwa 0,6 m tiefer als in den Messstellen 780100 und 780101 in der Lohstraße.

Sanierungsbereich 1b: erwartungsgemäß sehr inhomogene Verteilung von 1,1,1-Trichlorethan in den anstehenden quartären Sedimenten (Löß-/Auenlehme über Mittelterrassensanden und -kiesen) bis in die wassergesättigte Zone. Maximal-Konzentration im Schadenszentrum im Feststoff 453 mg/kg, in der Bodenluft 36000 mg/m³, in direct-push-Grundwasserproben 17000 μ g/l.

In der Grundwassermessstelle im Schadenszentrum (GWM 780058) wurden in den Jahren 1993-2001 in Schöpfproben hohe (meist >3000 μ g/l), in Pumpproben deutlich niedrigere (meist <100 μ g/l) Konzentrationen an 1,1,1-Trichlorethan gemessen. Seit 2002 wurden meist nur noch niedrige Gehalte (oft <10 μ g/l, in 4 Fällen >100 μ g/l, max. 590 μ g/l) festgestellt.

In der im unmittelbaren Abstrom gelegenen Messstelle 780730 wurde nur bei einer Grundwasserkampagne im August 2008 erhöhte Konzentrationen ermittelt. Bei allen Messungen davor und bei den Beprobungskampagnen danach war 1,1,1-Trichlorethan nicht bzw. zweimal nur in Spuren nachweisbar. Das gilt auch für alle anderen Messstellen im Abstrom mit Ausnahme von GWM 780078 und 780079, die nur in den Schöpfproben vom Juli 1995 erhöhte Werte (840 bzw. 110 μ g/l) gezeigt haben.

Bewertung / Handlungsbedarf:

Sanierungsbereich 1a: Im Grundwasserabstrom sind bei den letzten 7 Beprobungskampagnen keine organischen Schadstoffe festgestellt worden, Aussagen zu Schadstofffrachten sind somit nicht möglich. Ein relevanter Schadstoffeintrag bzw. eine Gefährdung des Grundwassers ist derzeit nicht erkennbar. Das ist möglicherweise darauf zurückzuführen, dass der Abscheider nicht mehr mit lösemittelhaltigen Abwässern beschickt wird und der Schadensbereich versiegelt ist, so dass keine Schadstoffverlagerung mit dem Sickerwasser erfolgen kann.

Auch hier besteht bei der derzeitigen Nutzung kein Sanierungsbedarf. Bei Eingriffen in den Boden (z.B. für den Bau einer Brandschutzmauer), insbesondere bis in die wassergesättigte Zone, oder auch bei Entsiegelungsmaßnahmen muss mit der Mobilisierung der Schadstoffe (besonders LAK, BTEX) gerechnet werden.

Es sollte weiterhin eine Grundwasserüberwachung durch etwa halbjährliche Stichtagsmessungen und Beprobungskampagnen im Februar/März (vermuteter GW-Hochstand) und September/ Oktober (vermuteter GW-Tiefstand) erfolgen (Grundwassermonitoring).

Bei den aktuellen Gegebenheiten ist eine Verhältnismäßigkeit zwischen einer Grundwassergefährdung und den zu erwartenden Sanierungskosten nicht gegeben.

Alle Eingriffe in den Boden oder Entsiegelungsmaßnahmen sollten vermieden werden bzw. müssten während der ganzen Zeit durch einen Bodengutachter begleitet werden.

Sanierungsbereich 1b: Nach den Ergebnissen früherer Untersuchungen und Gefährdungsabschätzungen (s. agus 2010) war mit erheblichen Grundwasserbelastungen zu rechnen (vgl. Kapitel 2.3). Aber bei den letzten 7 Beprobungskampagnen, d.h. seit März 2010 sind im Grundwasserabstrom kein 1,1,1-Trichlorethan oder dessen Abbauprodukte festgestellt worden, im Schadenszentrum wurden nur zeitweise nennenswerte CKW-Konzentrationen gemessen. Aussagen zu Schadstofffrachten somit nicht möglich. Ein relevanter Schadstoffeintrag bzw. eine Gefährdung des Grundwassers ist derzeit nicht erkennbar. Das ist möglicherweise darauf zurückzuführen, dass es sich bei dem Eintrag von 1,1,1-Trichlorethan über Undichtigkeiten im Kanalnetz in den Boden um ein einmaliges Ereignis (15.01.1991) gehandelt hat, die Aufnahmekapazität des Lehmbodens insgesamt nicht überschritten worden ist (<Residualsättigung), der in die wassergesättigte Zone gelangte Anteil mit der Grundwasserströmung abtransportiert worden ist (abgerissene Fahne) und der Schadensbereich versiegelt und überdacht ist, so dass keine Schadstoffverlagerung mit dem Sickerwasser erfolgen kann.

Bei der derzeitigen Nutzung besteht kein Sanierungsbedarf. Bei Eingriffen in den Boden (z.B. für Gründungsmaßnahmen beim Bau einer Brandschutzmauer), insbesondere bis in die wassergesättigte Zone, oder auch bei Entsiegelungsmaßnahmen muss mit der Mobilisierung von Schadstoffen (besonders LHKW, BTEX) gerechnet werden.

Bei den aktuellen Gegebenheiten ist eine Verhältnismäßigkeit zwischen einer Grundwassergefährdung und den zu erwartenden Sanierungskosten nicht gegeben.

Es sollte weiterhin eine Grundwasserüberwachung durch etwa halbjährliche Beprobungs-kampagnen im Februar/März (vermuteter GW-Hochstand) und September/Oktober (vermuteter GW-Tiefstand) erfolgen.

Alle Eingriffe in den Boden oder Entsiegelungsmaßnahmen sollten vermieden werden bzw. müssten während der ganzen Zeit durch einen Bodengutachter begleitet werden.

Es ist zu befürchten, dass sich unter der großflächigen Versiegelung weitere Schadstoffnester befinden (z.B. durch "unsachgemäße" Ölwechsel etc.).

Sanierungsbereich 2

Nach den bisherigen Stichtagsmessungen zeichnet sich für den Sanierungsbereich 2 ein sehr geringer hydraulischer Gradient von etwa 1:5000, zeitweise auch kleiner ab. Bei einem mit Sanierungsbereich 1 vergleichbaren kf-Wert von 8•10⁻⁴ m/s und einer angenommen Porosität von 20 % bedeutet das eine Abstandsgeschwindigkeit von ca. 25 m/Jahr bei östlicher Fließrichtung.

Untersuchungsprogramm:

Abgrenzung der BTEX-/LAK-Belastung durch Rammkernsondierungen und sensorische Prüfung, Entnahme und Analytik von Boden- und direct-push-Grundwasserproben. Einrichtung einer Grundwassermessstelle im Anstrom (GWM780167) sowie zunächst einer Messstelle im GW-Abstrom (GWM 780168), Beprobung und Analytik des Grundwassers aus allen Messstellen. Nach Feststellung einer BTEX-Belastung in der Abstrom-Messstelle (GWM 780168) Einrichtung von 3 Grundwassermessstellen im weiteren Abstrom und Beprobung und Analytik des Grundwassers aus allen Messstellen.

Ergebnisse:

Kontamination mit deutlichem Benzingeruch im oberen Teil der wassergesättigten Zone. Der genaue Eintragsort ist nicht bekannt, muss aber unmittelbar westlich des ehem. Generatoren-Prüfstandes im versiegelten und überdachten Bereich z.B. des ehem. Benzinwaschplatzes bzw. im angeschlossenen Kanalnetz liegen.

In den Bodenproben wurden z.T. BTEX (max. 22 mg/kg) und LAK (max. 110 mg/kg) festgestellt.

Maximal-Konzentration in direct-push-Grundwasserproben BTEX 30000 μ g/l (Benzol 1200 μ g/l) und LAK 30000 μ g/l im Bereich des ehem. Generatoren-Prüfstandes sowie im Grundwasserabstrom.

In der neu eingerichteten Messstelle 780168 wurden im August 2013 eine BTEX-Konzentration von 120 μ g/l (Benzol 0,79 μ g/l) und ein Naphhalin-Gehalt von 7,2 μ g/l gemessen.

Bei der Kampagne im Februar 2014 waren in der Messstelle 780168 bei 3 Beprobungsdurchgängen (nach Klarpumpen, nach starkem 4-stündigem Pumpen und nach 18 Stunden Ruhephase) trotz jeweiligem sensorischem Befund ("aromatischer" Geruch) weder BTEX noch Naphthalin nachzuweisen. Spuren von BTEX (9,2 µg/l) wurden lediglich in der Schöpfprobe der nächsten, im weiteren Abstrom gelegenen Messstelle 780169 gemessen.

Bei der Kampagne im April 2014 waren in keiner Messstelle im Sanierungsbereich 2 trotz jeweiligem sensorischem Befund ("aromatischer" Geruch) BTEX nachweisbar.

Bewertung / Handlungsbedarf:

Aussagen zu Schadstofffrachten sind derzeit nicht möglich.

Bei der derzeitigen Nutzung besteht kein Sanierungsbedarf. Bei Eingriffen in den Boden, insbesondere bis in die wassergesättigte Zone, oder auch bei Entsiegelungsmaßnahmen muss mit der Mobilisierung der Schadstoffe (bes. LAK, BTEX) gerechnet werden.

Es sollte weiterhin eine Grundwasserüberwachung durch etwa halbjährliche Stichtagsmessungen und Beprobungskampagnen im Februar/März (vermuteter GW-Hochstand) und September/ Oktober (vermuteter GW-Tiefstand) erfolgen.

Bei den aktuellen Gegebenheiten ist eine Verhältnismäßigkeit zwischen einer Grundwassergefährdung und den zu erwartenden Sanierungskosten nicht gegeben.

Alle Eingriffe in den Boden oder Entsiegelungsmaßnahmen sollten vermieden werden bzw. müssten während der ganzen Zeit durch einen Bodengutachter begleitet werden.

In alten Plänen ist ein Abwasserkanal zu erkennen, der aus dem Bereich des ehem. Generatoren-Prüfstandes bis in den Sanierungsbereich 1a und zur Lohstraße führt. Auch entlang des Kanal sind Kontaminationen nicht auszuschließen.

Außerdem ist zu befürchten, dass sich unter der großflächigen Versiegelung weitere Schadstoffnester befinden (z.B. durch "unsachgemäße" Ölwechsel etc.).

Sanierungsbereich 3

Nach den bisherigen Stichtagsmessungen ist auf der Fläche unmittelbar nördlich des Sanierungsbereichs 3 kein Gefälle erkennbar, die Differenz zwischen dem Grundwasserspiegel in GWM 780166 und dem als Vorfluter fungierenden Gladbach beträgt ca. 80 cm, so dass in Bachnähe ein größerer hydraulischer Gradient mit entsprechend großer Abstandsgeschwindigkeit angenommen werden kann (ca. 1:15).

Untersuchungsprogramm:

Abgrenzung der BTEX-/LAK-Belastung im Bereich der ehem. Waschhalle ("Karnevalhalle") durch Rammkernsondierungen und sensorische Prüfung, Entnahme und Analytik von directpush-Grundwasserproben. Einrichtung einer Grundwassermessstelle im Abstrom (GWM 780166), Beprobung und Analytik des Grundwassers aus allen Messstellen.

Ergebnisse:

Erhöhte Schadstoffkonzentrationen (LAK max. 1700 μ g/l) unmittelbar neben dem Abscheider, sensorische Befunde in der näheren Umgebung. Im Grundwasser der Messstelle 780166 waren keine LAK und BTEX messbar.

Bewertung / Handlungsbedarf:

Aussagen zu Schadstofffrachten sind nicht möglich. Relevante Schadstoffeinträge bzw. eine Gefährdung des Grundwassers sind derzeit nicht erkennbar. Das ist möglicherweise darauf zurückzuführen, dass der Abscheider nicht mehr mit lösemittelhaltigen Abwässern beschickt wird und der Schadensbereich überdacht und versiegelt ist, so dass keine Schadstoffverlagerung mit dem Sickerwasser erfolgen kann.

Im Zuge der Bodenarbeiten für die geplante Renaturierung des Gladbachs, wofür ein bis zu 90 m breiter Streifen in Anspruch genommen werden soll, in dem auch der Sanierungsbereich 3 liegt, sollte die Auskofferung des belasteten Bodens erfolgen. Dabei besteht besonders bei Eingriffen in die wassergesättigte Zone die Gefahr einer Mobilisierung der Schadstoffe (bes. LAK, BTEX).

Bis dahin sollte weiterhin eine Grundwasserüberwachung durch etwa halbjährliche Beprobungskampagnen im Februar/März (vermuteter GW-Hochstand) und September/Oktober (vermuteter GW-Tiefstand) erfolgen.

Alle Eingriffe in den Boden oder Entsiegelungsmaßnahmen sollten entweder vermieden werden bzw. müssten während der ganzen Zeit durch einen Bodengutachter begleitet werden.

Es ist zu befürchten, dass sich unter der großflächigen Versiegelung weitere Schadstoffnester befinden (z.B. durch "unsachgemäße" Ölwechsel etc.).

Bochum, 30. November 2014

zuständig IHK Bochum

Dipl.-Geographin Mechthild Kedzia